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Motivation 2/21

= Modern and planned high-energy physics experiments promise to provide a lot of
high-precision experimental data. The high precision is especially important in the
context of searches of deviations from Standard Model predictions — the New
Physics.

= Consequently, the theoretical predictions should also have high precision, which in
practice means going beyond NLO approximation. Fortunately, the multiloop
calculational methods have evolved enough to provide this precision (with some
reservations). Among the most important calculations are those of NNLO
corrections to differential cross sections of processes involving massive particles
(cf, e.g., Ramsey-Musolf’s talk last wednesday).

= However, already at NNLO level, the final results often have a very cumbersome
form, which may complicate their practical use in experimental data processing.
As the complexity explosively grows with increasing of the number of loops, the
problem of simplification should not be underestimated.



Outline 3/21

1. Modern techniques of multiloop calculations.
= |BP reduction, differential systems for master integrals.
= Reduction to e-form.
= Solution in terms of Chen's iterated path integrals.

2. Simplification of classical polylogarithms.
= Goncharov's polylogarithm via classical polylogarithms
= Constructing the basis of classical polylogarithms
= Symbol map and search for simplifications.

3. Chen’s iterated path integrals via Goncharov's polylogarithms
= Rationalizing variables.
= Path dependence.
= Path-independent combinations.



Standard calculation path a2

1. Diagram generation

Generate diagrams contributing to the chosen order of perturbation theory.

Tools: qgraf [Nogueira, 1993], FeynArts [Hahn, 2001], tapir [Gerlach et al., 2022],...

2. IBP reduction

Setup IBP reduction, derive differential system for master integrals.

Tools: FIRE6 [Smirnov and Chuharev, 2020], Kira2 [Klappert et al., 2021], LiteRed [RL,
2012], NeatIBP [Wu et al., 2024], ...

3. DE Solution

Reduce the system to e¢-form, write down solution in terms of polylogarithms.
Fix boundary conditions by auxiliary methods.

Tools: Fuchsia [Gituliar and Magerya, 2017], epsilon [Prausa, 2017], Libra [RL, 2021]




Modern techniques of multiloop
calculations.




IBP identities 5/21

Given a Feynman diagram, consider a family

J(n) = j(m, ..., ny) = /dpLD*" _ /

L
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Di,...,Dy — denominators of the
D41, ..., Dy — irreducible numerators.
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Di,...,Dyy — denominators of the diagram,

D41, ..., Dy — irreducible numerators.

IBP identities [Chetyrkin and Tkachov, 1981]

In dim. reg. the integral of divergence is zero (no surface terms):
0= [duf - 4D="= Y (m)itn+ 5.)

s
Explicitly differentiating, we obtain relations between integrals.
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IBP identities [Chetyrkin and Tkachov, 1981]

In dim. reg. the integral of divergence is zero (no surface terms):
0= [duf - 4D="= Y (m)itn+ 5.)

s
Explicitly differentiating, we obtain relations between integrals.

More recent ideas [RL, 2014; Yang Zhang, 2014]

IBP identities in Lee-Pomeransky and Baikov representations : approach based

on calculating syzygies. NB: parametric IBPs work also for non-standard setup.




IBP reduction and differential equations

Laporta algorithm (FIRE, Kira, Reduze, NeatIBP ...)

|
= generate identities for many numeric n € ZV. |
= use Gauss elimination and collect reduction rules :
to database. :

|

= twist: mapping to finite fields F, + :
reconstruction.<— naturally parallelizable [

|

Il




IBP reduction and differential equations

Heuristic search (LiteRed)

1. Generate identities for shifts around n with
symbolic entries.

2. Use Gauss elimination until proper rule is found.

3. Solve Diophantine equations to derive
applicability condition.
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ion and differential equations

Heuristic search (LiteRed)

1. Generate identities for shifts around n with
symbolic entries.

2. Use Gauss elimination until proper rule is found.

3. Solve Diophantine equations to derive
applicability condition.

As a result of IBP reduction we express amplitudes via a finite set of master integrals

(=0 d0T )

What is even more important, using IBP reduction we can obtain differential equations
for the master integrals:

Oxj = M(x,d)j

It is often easier to solve these equations rather than to use direct methods for
calculation of the master integrals.




Differential equations for several kinematic variables

= For several kinematic variables we have the corresponding number of differential
systems:

o
—j = Mi(x,d)j
o (x, d)j

Here M;(x, d) are matrices of rational functions of x and d.



Differential equations for several kinematic variables

= For several kinematic variables we have the corresponding number of differential

systems:

o
—j = Mi(x,d)j
o (x, d)j

Here M;(x, d) are matrices of rational functions of x and d.
= Integrability conditions — flatness of the connection V; = d% — M;:
[Vi,Vj=0.

NB: Introducing differential 1-form M = M;dx; we can write the integrability
condition as [ dM - MAM=0 ]




Differential equations for several kinematic variables

= For several kinematic variables we have the corresponding number of differential

systems:

o
—j = Mi(x,d)j
o (x, d)j

Here M;(x, d) are matrices of rational functions of x and d.

= Integrability conditions — flatness of the connection V; = d% — M;:
[va VJ] =0.

NB: Introducing differential 1-form M = M;dx; we can write the integrability
condition as [ dM - MAM=0 ]

= The general solution (or evolution operator) is expressed as path-ordered exponent

U(x, x0) = Pexp [/C dx’' - M(x', d)} = Pexp {/;M(x/, d)] ,

where C = C(xp, x) denotes a path connecting xo and x.



Differential equations for several kinematic variables

= For several kinematic variables we have the corresponding number of differential

systems:
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o (x, d)j

Here M;(x, d) are matrices of rational functions of x and d.

= Integrability conditions — flatness of the connection V; = d% — M;:
[va VJ] =0.

NB: Introducing differential 1-form M = M;dx; we can write the integrability
condition as [ dM - MAM=0 ]

= The general solution (or evolution operator) is expressed as path-ordered exponent

U(x, x0) = Pexp [/C dx’' - M(x', d)} = Pexp {/;M(x/, d)] ,

where C = C(xp, x) denotes a path connecting xo and x.

Note that U(x, xp) is path-independent, i.e., does not change upon defor-
mations of the path C(xo, x) provided they retain the end points xo and x
and do not cross singularities of M(x, d).




Differential equations in e-form and Chen'’s iterated path integrals

= [Henn, 2013]: It is often possible to find a canonical basis J = T~1j such that
6,‘.1 = ES,'(X)J

Here € = 2 — d/2 is the parameter of dimensional regularization, S(x) is
Fuchsian, i.e., has no multiple poles and falls of at infinity. [RL, 2015]: the
algorithm of finding the transformation to e-form for a given differential system.
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[Henn, 2013]: It is often possible to find a canonical basis J = T ~1j such that
6,‘.1 = ES,'(X)J

Here € = 2 — d/2 is the parameter of dimensional regularization, S(x) is
Fuchsian, i.e., has no multiple poles and falls of at infinity. [RL, 2015]: the
algorithm of finding the transformation to e-form for a given differential system.

= The path-ordered exponent can be expanded in perturbative series in e:

U(x,x0) = Pexp |:F/CS(X/):| = Z €" /A/S(xn) ..8(x), S(x) = dx - S(x)

n x>xp>...>Xp
€ "¢ @

Chen'’s iterated path integrals

Ze(wn,y - - ywi //wn(xn) wi(x1)

x>x" >

where wy(xx) = dxi - fi(xc) are some differential 1-forms. Note that the
integrability condition now implies dS = 0 and therefore we have that dw;, = 0.




Goncharov’s polylogarithms and classical polylogarithms

= Goncharov’s polylogarithms are 1-dimensional cousins of Z¢. They are
conveniently defined recursively:
dx In" x
= G(an-1,---,a1|x) and G(0,...,0|x) =
X — an ~—— n!
n

X
G(an,an—1,...,a1|x) = /
J0

If a; # 0, they are related to 1-dimensional Z¢ via

[ G(an,an—1,...,a1|x) = Zc(dIn(x—ap),...,dIn(x—a1)) with C = C(x,0).

—

= Classical polylogarithms Li, are expressed via G as Lin(x) = —G(0,...,0,1|x).
N7

n
Moreover, generic G with up to three indices can be expressed via Li, with
n=123.

= NNLO results are often expressible via classical polylogarithms.



Simplification of classical
polylogarithms



Simplifications with symbol map 10/21

There is a standard approach to the simplification of the polylogarithmic expressions
using symbol map. One might think of symbols as a cleaner way to represent iterated
(or path-ordered) integrals with logarithmic weights (with some reservations, though):

s
= // dinpp(7a)...dInpi(11) ——————— pn®...®p1

1>7p>...>11>0
Formal symbol manipulation rules then easily follow, e.g.
din(pg) =dInp+ding == (..opge...)=(...9p2...)+(...®q®...)

Similarly, by ordering the integration variables in the product of integrals, we get
S(hhk) = S(h)wS(k), where LU denotes a shuffle product, e.g.

(avb)wi(cod) = avbecod+avcobed+avcedob+ceavbod+covavdeb+codoashb

We have, in particular, symbols for classical polylogarithms

S(Lin(x)) = x®...8x8(x — 1)

n—1



Simplifications with symbol map 11/21

Symbols are good for checking the identities, e.g., using S it is easy to establish

7Lis (1+E/z)77|_| (1+°/Z)+7L| (7)77|_, (z+6)+11[_| (Z+5) 11L|2( )

+4Lip(1+ ze) — 4Lia(1 + 22) + 18Lip(—iz) — 18Lin(iz) + 11Lip (5542 ) — 11Lip (5522)
= 22— Birinz+6imln (2— V3) ’“;&) — 24iG,

_ _ 2mi/3 )"
where e =1/ =e and G = Zn @n +1)2 is Catalan constant.
But how can we construct a basis of Li, functions which might enter the simplified

expression?
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TLio (52L2) — 7Lin (KE2) + 7Lia (2£2) — TLin (252 + 11Lip (2£2) — 11Lip (££2)

“+4Lig(1+ z&) — 4Lia(1 + 28) + 18Lia(—iz) — 18Lia(iz) + 11Lia ﬁ*f/f) —11Lip 1+E/Z)

1+ie

= 22— Birinz+6imln (2— V3) ’“;&) — 24iG,

where e = 1/ = 2™/3 and G = Z is Catalan constant.

)
n (2 -%—1)2
But how can we construct a basis of Li, functions which might enter the simplified
expression?

NB: This identity and more complicated ones involving Liz functions was used in real
life for the simplification of the total cross section of Compton scattering @NLO [RL
et al., 2021].
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Branching points 12/21

Suppose that branching points (or, in multivariate setup, branching hypersurfaces) of

original expression are determined by polynomial equations!

K
\/ Pt =0, *
k=1

where py(x) are some irreducible polynomials. Then the simplified expression should
also have the same set branching points.

IFor multiloop calculations the polynomials are known in advance: they are the denominators of S(x)
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Suppose that branching points (or, in multivariate setup, branching hypersurfaces) of

original expression are determined by polynomial equations!
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where py(x) are some irreducible polynomials. Then the simplified expression should
also have the same set branching points.

In order to construct all possible arguments of Li,, we need to recall the position of
branching points Li, function. Those are {0,1,00}. Then the valid argument of Li,
should be a rational function N(x)/D(x), such that the solutions of any of the three
equations

N(x)/D(x) =0, N(x)/D(x) =00, N(x)/D(x)=1
belong to the branching set determined by (x).
Note that the three equations can be rewritten as

N(x) =0, D(x)=0, N(x)—D(x)=0

and then our requirement leads to

K K K
OES | CAEOES | ELOEOES | AN NNy 2%
=i, k=it [s=il

IFor multiloop calculations the polynomials are known in advance: they are the denominators of S(x)



Finding the basis of Li, function: the algorithm

1. Generate polynomials
i

{Po,P1,... PN} ={1,p1,... Pk, P}, P1P2,...PLP% - ..
sufficiently high power.

,p}?} up to some

2. Search in the above set for linearly dependent triplets {P;, P;, Pi}, such that
aiPi 4 ajP; + axPx = 0, where a;, aj, a, are coefficients independent of x.

3. Then each triplet gives rise to the following 6 possible Li, functions:
Lin (-220) L, (— Sl ) ,Lin (—E”'—PJ) :
ajP; ak Py ay P
i P P,
Lin(—a“),u,,(—ak k),Li,, _ 2Tk
aiP; a;P; ajP;

Of course, these 6 arguments are related by the group of Moebius
transformations stabilizing the {0,1, co} set:

z—z, 1—2z 1/z,1-1/z, 1/(1 - 2), z/(z—1).



Example | 14/21

Let us take

‘ {p1,. . ps} ={x,y,%,9,%},  wherea=1-a. ’

Then applying the above algorithm, we find 30 = 6 * 5 valid arguments of Li,
functions. Using symbol map, we find relation for Li, functions:

5-term relation for dilogs

f(xy) +f ({?) +f (6) —f(x)=f(y)=0
Xy xy

where 1
f(x) = Lia(x) + 5 In(1 — x)Inx.

This identity was found by W.Spence in 1809.



Example II

Let us now take

o~ o~~~ ’

‘ {p1,--sp10} ={x,¥,2,%,¥,2,xy,xz, yz, xyz}

Then applying the above algorithm, we find 132 = 6 % 22 valid arguments of Lij,
functions. Using symbol map, we find nontrivial relation for Liz functions:

22-term relation for Lij

foe) + 3¢ (A) L (i) _3f (:1) Ler (J)
xyz Xyz XXyz X

3
—3f(xy) + 3f(x) + §7r2 In x — 3(3 + permutations = 0, x,y,z € (0,1)

where a =1 — a and

F(3) = Lis(x) + 5 In(1 =) n? (x2) = T in (7).

This identity is probably equivalent to 22 term relation in [Goncharov, 1991].



Chen'’s iterated path integrals via
Goncharov’s polylogarithms




Path dependence of 7. 16/21

1. Why it is important to care about the path? Because we finally want to express
Z¢ via Goncharov's polylogs — the one-dimensional Chen's iterated integrals
with weights wy = dlog(x — ax). It means that we have to choose path and its

parametrization so as to rationalize the weights.
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1. Why it is important to care about the path? Because we finally want to express
Z¢ via Goncharov's polylogs — the one-dimensional Chen's iterated integrals
with weights wy = dlog(x — ax). It means that we have to choose path and its
parametrization so as to rationalize the weights.

2. For example, if we have global rationalizing variables, we can choose a path
consisting of a set of straight line segments on each only one variable is changing.

3. Path-ordered exponent U(x, xo) is “path-independent”. So is its perturbative
expansion. But does it mean each individual Z¢ is also path independent? No,
it does not! Only some specific linear combinations are path-independent.

4. Why we need path-independent combinations other than those which appear
in pert. expansion of U(x, xo)? Because of the first issue: sometimes we need to
choose different paths for different iterated integrals to express them via
Goncharov's polylogs.
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We may vary the path on the complex plane of x. Are 1-dim Z. path-independent?
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otherwise. In particular, [Ic(w,,, coowt) = Ung11 j and we remember that U is

path-independent!

Why the same approach does not work for several variables?



1-dim case

Let us first consider 1-dimensional case

Te(wn(x), ... wi(x))

We may vary the path on the complex plane of x. Are 1-dim Z. path-independent?
Yes, they are.

Auxiliary differential system

0
wr

dJ=MJ, with M=

wn 0

Then we have Uy is equal to Z¢(wj_1, ... wk|x) for i > k, to 1 if i = k and to 0

otherwise. In particular, [Ic(w,,, coowt) = Ung11 j and we remember that U is

path-independent!

Why the same approach does not work for several variables?

dM =0 Jbut| MAM#0 | so the connection is not flat and Pexp depends on

the path.




Path-independent combinations 18/21

= Which linear combinations of Z¢ are path-independent?
Note that for one-fold Z¢(w) the path-independence is equivalent to the
requirement dw = 0 (which we automatically have for our setup).

2Note that despite the similarity this is not the same symbol map that we discussed earlier.
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Path-independent combinations 18/21

= Which linear combinations of Z¢ are path-independent?
Note that for one-fold Z¢(w) the path-independence is equivalent to the
requirement dw = 0 (which we automatically have for our setup).

= Let us relate to each Z¢ the “symbol”?:

S
Ze(wny . yw1) — wn Q... Qwi

and linearly extend the definition to linear combinations.

= Let us define the linear operator D (the “differential”) acting as

n—1
D(w,,®...®w1):an®...®wk/\wk+1®.‘.®w1
k=1

Path-independence criterion

L= Za caZc(wa) is path-independent <= D(S(L)) =0

2Note that despite the similarity this is not the same symbol map that we discussed earlier.



Example: ete™ — utpu~

Physical variables: 3 — muon velocity
in c.m.s., ¢ = cos )/ — cosine of
scattering angle.

There are 66 master integrals. In order to reduce the differential equation to

. . 2 £241)x
e-form, one has to pass to new variables &, x via = Ezil’ = (62x2+)1 .

The differential system in e-form has the form dJ = ¢ leil SidInw;J,

wi, ... wyg are rational functions of 5 and c. But the last two weights wio and
w3 only become rational when passing to &, .

In principle, we can pass to &, x, but then the weights wg_11 become too
complicated. E.g.

1—28c+ B X% — 48X+ 662+ — 83X + X% + 662 —4ex +1
wg = =

(1-B)2(1~pBc) (1-9*(1 - &x)?




Example: ete™ — utpu~

So we really want to stay with 5 and ¢ where it is possible. The more so that only a
few (out of almost 3000) iterated integrals in the final expression involve weights

w12, wi3:
Tc(wiz), Zc(wis), Ze(wiz, wiz, ws), Zc(wiz, wis, ws),
Tc(wiz, wiz, ws, ws), Te(wi2, wis, ws, ws)
Bc

Using the above mentioned technique we find, in particular, that 1
Tc(wiz, wiz, ws)—4Zc(wa, wi, wo)+2Zc(we, wa, ws)+2Zc (we, ws, wa)
is path-independent. So, for this specific combination we can pass to 0 1 B
& and x —- note that there are no wg_1;1 weights in this
combination.

-1




Summary 21/21

= Each step towards increasing the # of loops and/or # of scales
requires new methods. Those involve both technological advances
and new algorithms coming from various fields of mathematics.

= Already at NNLO level the problem of simplification of the results
becomes quite important.

= The basis of Li, functions with a prescribed position of branching
points can be found algorithmically.

= Symbol map & and DS can help in finding the identities and the
path-independent combinations, respectively.

= However, the problem of simplification still remains heuristic to some
extent. Maybe Al techniques can help here.

Thank you!
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