
Symmetry TFT and 4D supersymmetric field
theory

Qiang Jia
5th National workshop on Fields and Strings

Korea Institute for Advanced Study
with Zhihao Duan and Sungjay Lee

To appear



4D supersymmetric gauge theory
▶ In the past decades, a lot of progress has been made in the

study of supersymmetric theories.
▶ People have invented a plethora of protected quantities that

capture the dynamics of the system
▶ Supersymmetric indices

▶ Witten index
▶ Superconformal index
▶ ...

▶ Topological invariants
▶ Donaldson-Witten invariants
▶ Vafa-Witten invariants

▶ Those quantities depend on the global structure of the gauge
group.

▶ SU(2) vs SO(3), SU(4) vs SO(6) for example.
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Witten index on T4

▶ Consider 4D N = 1 pure SU(2) theory, there are two super-
symmetric vacua

▶ The Witten index on T4 (large radius) is

ISU(2) = Tr(−1)Fe−βH = 1 + 1 = 2
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Witten index on T4

▶ Consider the gauge group to be SO(3) = SU(2)/Z2 instead.
▶ On R4, the local dynamics are the same, we still have two

vacua.
▶ This is not true for T4, one actually gets

ISO(3) = 2 + 7 = 9 = 8 + 1

▶ From Hamiltonian point of view, the extra seven states are
contributed by the non-trivial flat SO(3) bundle character-
ized by the discrete ’t Hooft flux.



▶ Consider a T2 parametrized by xi, xj(i, j = 1, 2, 3) and de-
note the holonomy along xi, xj as U,V ∈ SU(2) and consider

V−1U−1VU = (−1)ωij

▶ If the gauge group is SU(2), for a flat configuration one must
have ωij = 0.

▶ However, if the gauge group is SO(3), ωij = 1 is also ac-
ceptable, since −1 ∈ SU(2) projects to 1 ∈ SO(3).



▶ ωij ∈ Z2 is the obstruction of lifting SO(3)-bundle to SU(2)-
bundle.

▶ On spatial T3, there are totally 23 − 1 = 7 non-trivial flat
SO(3) configuration characterized by ω12, ω23, ω13. Each
contributes one vacuum.

▶ ωij are also known as discrete ’t Hooft flux. Originally, it is
realized by imposing a twist boundary condition for SU(2)
gauge field

Aν(xµ = aµ) = Ωµ

(
Aν(xµ = 0)− i

∂

∂xν

)
Ω−1

µ

where Aν(xµ = aµ) and Aν(xµ = 0) are glued via a gauge
transformation Ωµ(x ̸= xµ)

▶ ωij are encoded as

(−1)ωij = Ω−1
i (xj = 0)Ω−1

j (xi = ai)Ωi(xj = aj)Ωj(xi = 0)

which are gauge invariant quantities.
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Discrete ’t Hooft flux as 2-form background
▶ Recall that, if we have a complex scalar ϕ(θ) living along a

circle with a twist boundary condition

ϕ(θ + 2π) = eiωϕ(θ)

If we consider a singular gauge transformation

ϕ(θ) → e−
ωθ
2π ϕ, Aθ → Aθ +

ω

2π

then the scalar is periodic at the expense of introducing a
U(1) holonomies.

▶ Similarly, one can perform a singular gauge transformation
to eliminate the twist boundary condition at the expense of
introducing a 2-form background

b =
1
2

∑
i,j

ωijdxi ∧ dxj

▶ Discrete ’t Hooft flux ↔ 2-form background



▶ Given a theory with gauge group G, we may consider its
maximally covering group Ĝ with 2-form background b ∈
H2(M4,Z(Ĝ)) and denote the corresponding supersymmet-
ric quantity as ISUSY[b]

▶ ISUSY[b] carries all information such that, for any G sharing
the same Lie algebra, one has

IG,φ =
1
N

∑
b∈H2(M4,Z(Ĝ/G))

eiφ(b)ISUSY[b]

with N certain normalization factor, φ(b) discrete torsion.
▶ In other words, gauging the 1-form symmetry changes the

global structure of the gauge group
▶ From this point of view, the problem is best formulated in

terms of Symmetry Topological Field Theory (TFT).

QIANG JIA
[Gaiotto,Kapustin,Seiberg,Willett,2015]



Symmetry TFT

▶ In the present case, the SymTFT is 5D BF theory

SBF =
N
2π

∫
B̃ ∧ dB

▶ The 4D quantities can be expanded as

IG,φ = top⟨G, φ|eiHt|χSUSY⟩
▶ |χSUSY⟩ is "dynamics boundary state".
▶ |G, φ⟩top is "topological boundary state".
▶ Gauging 1-form symmetry is amount to changing topologi-

cal boundary state
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▶ The motivation of this work is to study 4D supersymmetric
invariants using SymTFT, focusing on the global structures
of the gauge group.

▶ We consider three concrete examples
▶ Witten index on T4 (Spin)
▶ Superconformal index on L(r, 1)× S1 (Torsion)
▶ Vafa-Witten invariants on CP2 (Non-Spin)

▶ They are formulated on spin, non-spin and torsional mani-
fold separately

▶ Through those examples, we will work out the details of
topological/dynamical boundary state on various manifolds
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5D BF theory as SymTFT

SBF =
N
2π

∫
M4×[0,1]

B̃ ∧ dB

▶ Here B and B̃ are two-form gauge fields.
▶ For any closed 2-cycle Γ ∈ H2(M4), one can construct two

gauge invariant surface operators

U[Γ] = exp

[
i
∮
Γ

B
]
, Ũ[Γ] = exp

[
i
∮
Γ

B̃
]

and they satisfy the quantum algebra

U[Γ]Ũ[Γ′] = ω−K(Γ,Γ′)Ũ[Γ′] U[Γ]

in the Hamiltonian picture. K[Γ,Γ′] is the intersection num-
ber and ω is N-root of unity.

▶ Moreover, they satisfy

UN [Γ] = ŨN [Γ] = 1 ,



Boundary states
▶ Topological boundary states are 1-1 corresponds to maxi-

mally commuting set of operators
▶ Among them, there are two canonical boundary state

▶ Dirichlet boundary state |b⟩ (Diagonalizing U)

U[Γ]|b⟩ = ω
∫
γ∧b|b⟩, Ũ[Γ]|b⟩ = |b − γ⟩

▶ Neumann boundary state |b̃⟩ (Diagonalizing Ũ)

Ũ[Γ]|b̃⟩ = ω
∫
γ∧b̃|b̃⟩, U[Γ]|b⟩ = |b + γ⟩

▶ They are related by

|b̃⟩ = 1√
Nh2

∑
b

ω
∫

b̃∧b|b⟩

▶ Identify b as the 2-form background of the 4D theory, the
dynamical boundary state is constructed as

|χSUSY⟩ =
∑

b

ISUSY[b]|b⟩



SL(2,ZN) and Pontryagin square
▶ The 5D BF theory is invariant under an SL(2,ZN) transfor-

mation generated by S and T

S : B → B̃, B̃ → −B,

T : B → B, B̃ → B̃ + B.

S-transformation switch U/Ũ

VSU[Γ]V†
S = Ũ[Γ], VSŨ[Γ]V†

S = U[−Γ]

and T-transformation generates

VTU[Γ]V†
T = U[Γ], VTŨ[Γ]V†

T = S(1,1)[Γ]

▶ Here the generic surface operator is

S(e,m)[Γ] = exp

[
i
∮
Γ

eB + mB̃
]



▶ In particular, one has

S(1,1)[Γ] = exp

[
i
∮
Γ

B + B̃
]
= ω

1
2

∫
P(γ)U[Γ]Ũ[Γ]

where P(γ) is the Pontryagin square maps H2(M4,ZN) to
H4(M4,Z2N)

P(γ) =

{
γ ∪ γ (N is odd)
γ ∪ γ + γ ∪1 δγ (N is even)

▶ One can work out{
VS|b⟩ = 1√

Nh2

∑
b′ ω

K(b,b′)|b′⟩ = |b̃ = b⟩
VT |b⟩ = ω− 1

2

∫
P(b)|b⟩

VS switch D/N boundary state, VT stack an SPT phase.



Figure: Topological boundary states for N = 2



Figure: Topological boundary states for N = 4



Figure: Topological boundary states for N = 8



Witten index on T4

▶ On T4, the 2-form b-field can be decomposed as

b =
∑

i

tidx0 ∧ dxi +
1
2

∑
i,j,k

siϵijkdxj ∧ dxk

and we can denote |b⟩ = |(t1, t2, t3), (s1, s2, s3)⟩ ≡ |(t, s)⟩
▶ S-transformation switch |(t, s)⟩ and |(̃t, s̃)⟩

|(̃t, s̃)⟩ = 1
N3

∑
t,s

ω t̃·s+s̃·t|(t, s)⟩

▶ T-transformation stack a phase

VT |(t, s)⟩ = ω−t·s|(t, s)⟩



▶ The dynamics boundary states are constructed as following

Ĝ Center Dynamical boundary state |χSUSY⟩
SU(n) Zn (−1)n−1n

∑
t,s δt·s,0|(t, s)⟩

Sp(n) Z2 (−1)n(n + 1)
∑

t,s δnt·s,0|(t, s)⟩
Spin(2n + 1) Z2 (−1)n(2n − 1)

∑
t,s |(t, s)⟩

Spin(4n + 2) Z4 −4n
∑

t,s δt·s,0|(t, s)⟩
Spin(8n + 4) Z2 × Z2 (8n + 2)

∑
t,s;t′,s′ δt·s+t′·s′,0|(t, s); (t′, s′)⟩

Spin(8n) Z2 × Z2 (8n − 2)
∑

t,s;t′,s′ δt·s′+t′·s,0|(t, s); (t′, s′)⟩
E6 Z3 12

∑
t,s δ2t·s,0|(t, s)⟩

E7 Z2 −18
∑

t,s δt·s,0|(t, s)⟩
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▶ For example, for SU(N) theory, the dynamical boundary
state is

|χSUSY⟩ = (−1)N−1N
∑

t,s

δt·s,0|(t, s)⟩

▶ The Witten index of SU(N) is

Z[t = 0, s = 0] ≡ Tr(−1)F = ⟨(0, 0)|χSUSY⟩ = (−1)N−1N

▶ The Witten index of SU(N)/ZN is

⟨(0̃, 0̃)|χSUSY⟩ = (−1)N−1
N−1∑
k=0

(gcd(N, k))3

▶ For N = 2, one has

⟨(0̃, 0̃)|χSUSY⟩ = −1 − 8 = −9





Superconformal index on L(r, 1)× S1

▶ Let’s then consider the 4D N = 1 superconformal index on
L(r, 1)× S1

I = Tr
[
(−1)FqD̂− 1

2 R̂x2Ĵ3
R+R̂y2Ĵ3

Leimβ
]
,

▶ Using localization technique, the index can be reduced to
an integral along the flat configuration, characterized by the
holonomies.

▶ The holonomy along S1 is denoted as U
▶ L(r, 1) = S3/Zr has a torsion 1-cycle Cτ such that rCτ = 0.

We denote the holonomies along Cτ as V



▶ If we turn off the ’t Hooft flux, then U and V commute and
both lie in the Cartan torus.

▶ However, since Cτ is torsion, one should have Vr = 1 and
elements of V are discrete and are labelled by

m = (m1,m2, · · · ,mrank(G))

▶ Then the index in the trivial sector is

I =
∑

m

1
|W(m)|

∮ rank(Ĝ)∏
l=1

(
dzl

2πizl

)
∆m(zi)

∏
α∈roots

IV
(
m(α), eia(α)) Nχ∏

l=1

∏
w∈ρl

I(ρl)
χ

(
m(w), eia(w))



▶ The discrete ’t Hooft fluxes are characterized by the follow-
ing two quantities

UVU−1V−1 = u, Vr = v

with u, v lying in the center Z(Ĝ), they project to flat con-
figuration of Ĝ/Z(Ĝ).

▶ U,V are defined only up to multiplying center ω ∈ Z(Ĝ).
Therefore

v ∼ vωr

▶ u also satisfies ur = 1 because

(uV)r = urVr = (UVU−1)r = UVrU−1 = Vr → ur = 1.
▶ In particular, when the center is ZN , one has uN = vN = 1

such that
ugcd(r,N) = 1, v ∼ vωgcd(r,N)

▶ The index in the twist sector is similarly obtained by

I[u, v] =
∑

UVU−1V−1=u,Vr=v

IU,V



▶ There is only one closed 2-cycle Γ1 = Cτ × S1 and corre-
sponding operators U[Γ1], Ũ[Γ1]. They satisfy

U[Γ1]
r = U[Γ1]

r = 1 and U[Γ1]
N = U[Γ1]

N = 1

and they combine to

U[Γ1]
gcd(r,N) = Ũ[Γ1]

gcd(r,N) = 1

▶ Those operators commute with each other since Γ1 has no
self-intersection number. It seems the Hilbert space is trivial



▶ Actually, one should include another 2-surface Γ2 such that

∂Γ2 = rCτ

and consider the operators

U[Γ2] = exp

[
i
∮
Γ2

B
]
, Ũ[Γ2] = exp

[
i
∮
Γ2

B̃
]

▶ Since Γ2 is not closed, one might worry they are not gauge
invariant under the transformation

B → B + dλ, B̃ → B̃ + dλ̃,

since by Stokes theorem

U[Γ2] → ωir
∫

Cτ
λU[Γ2], Ũ[Γ2] → ωir

∫
Cτ

λ̃Ũ[Γ2]

▶ However, for level N BF theory both B, B̃ and λ, λ̃ are ZN-
valued instead of U(1)-valued. One may check the follow-
ing operators are gauge invariant

U[Γ2]
kN

gcd(r,N) , Ũ[Γ2]
k̃N

gcd(r,N) , k, k̃ = 0, · · · , gcd(r,N)− 1



▶ In summary, we have two kinds of operators generated by

{U[Γ1],U[Γ2]
N

gcd(r,N)}, {Ũ[Γ1], Ũ[Γ2]
N

gcd(r,N)}
▶ The intersection number between Γ1 and Γ2 is one, therefore

we have{
U[Γ1]Ũ[Γ2]

N
gcd(r,N) = ω− N

gcd(r,N) Ũ[Γ2]
N

gcd(r,N) U[Γ1]

Ũ[Γ1]U[Γ2]
N

gcd(r,N) = ω+ N
gcd(r,N) U[Γ2]

N
gcd(r,N) Ũ[Γ1]

▶ The Dirichlet boundary state |b1, b2⟩ is parameterized by
two ZN-valued number b1, b2 satisfying

gcd(r,N)b1 = 0, b2 ∼ b2 + gcd(r,N)

with {
U[Γ1]|b1, b2⟩ = ωb1|b1, b2⟩
U[Γ2]

N
gcd(r,N) |b1, b2⟩ = ω

N
gcd(r,N)

b2|b1, b2⟩
and {

Ũ[Γ1]|b1, b2⟩ = |b1, b2 − 1⟩
Ũ[Γ2]

N
gcd(r,N) |b1, b2⟩ = |b1 − N

gcd(r,N)
, b2⟩



▶ The holonomies u, v are identified as

u = ωb1 , v = ωb2

and using gcd(r,N)b1 = 0, b2 ∼ b2+gcd(r,N) one recovers

ugcd(r,N) = 1, v ∼ vωgcd(r,N)

▶ The S/T-transformation acts separately as{
VS|(b1, b2)⟩ = 1

gcd(r,N)

∑
b′1,b

′
2∈Mr,N

ωb1b′2+b2b′1|(b′
1, b′

2)⟩
VT |(b1, b2)⟩ = ω

1
2

∫
P(b)|(b1, b2)⟩

with

Mr,N =

{
b1 =

Nk1

gcd(r,N)
, b2 = k2|k1, k2 ∈ Zgcd(r,N)

}
▶ The dynamics boundary state is then constructed as

|χSUSY⟩ =
∑
b1,b2

I[b1, b2]|b1, b2⟩



Pontryagin square
▶ The Pontryagin square is{

P(b) = b ∪ b + b ∪1 δb mod 2N (N is even)
P(b) = b ∪ b mod 2N (N is odd)

where
b = b1γ2 + b2γ1

and γ1, γ2 are Poincare dual of Γ1,Γ2 satisfying

δγ1 = 0, δγ2 = r[Cτ ]

▶ The cup-1 product reads∫
γ2 ∪1 δγ2 = r,

∫
γ1 ∪1 δγ2 = 0

which gives∫
P(b) =

{
2b1b2 + rb2

1 (N is even)
2b1b2 (N is odd)



Figure: An illustration of the cup-1 product
∫
[α]∪1 [β] where [· · · ] denote the

Poincare dual. The thickening of β is given in both the positive and negative
directions of the Morse flow (both directions pointing away from the central
red curve). And

∫
[α] ∪1 [β] measure the intersection between α and the

thickening of β.
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Conclusion

▶ We analyse the SymTFT formulated on various kinds of
manifold, Spin, torsion, non-Spin.

▶ We use SymTFT to study the supersymmetric quantities of
gauge theory, focusing on the global structure of gauge group.




