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Outline

o Overview of generalized symmetries

e Strict and weak 2-group symmetries

e 2-group gauge theory

e Landau-Ginzburg model for strict 2-group symmetries and SSB

e 3-group symmetries
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Motivations

e Symmetry is a central concept in physics

(1) Global symmetry: ¢ — g - ¢, g is constant in spacetime.

(2) Local (gauge) symmetry: ¢ — g(x) - ¢, g(x) is spacetime dependent.

Examples of “ordinary symmetry”

e O-form: acting on local operators

e invertible: the symmetry transformations are invertible

Global symmetry

Local (gauge) symmetry

Spacetime

Lorentz symmetry, C, P, T

Diffeomorphism

Internal

Flavor symmetry, U(1)g, U(1),

Gauge symmetry of SM

e By default we are talking about global internal symmetries.
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Generalized Global Symmetries

e Generalize the ordinary (invertible 0-form) global symmetry
(1) 0-form — Higher-form symmetry acting on extended operators

(2) Group G — Higher-group, non-invertible categorical symmetries . ..

Local operator Higher-dim. operators
Invertible ordinary sym. higher-form, higher-group sym.
Non-invertible | non-invertible sym. higher-categorical sym.
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Higher-form symmetry

e p-form symmetry with group G (Gaiotto, Kapustin, Seiberg, Willett 14")
e A p-form symmetry is generated by a (d — p — 1)-dimensional
topological operator U(g, M(d=P=1):

and acts on p-dimensional object(operator) V/(C(P)).
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Higher-form symmetry

e p-form symmetry with group G (Gaiotto, Kapustin, Seiberg, Willett 14")
e A p-form symmetry is generated by a (d — p — 1)-dimensional
topological operator U(g, M(d=P=1):

and acts on p-dimensional object(operator) V/(C(P).
e U(g, M@=P=1)) has non-trivial action on V/(C(P)) when M(4=P=1) and
C(P) are non-trivially linked.

U(g, MUP=D)Vi(c?)) = R'y(g)V/(CP). (1)

M’(d-p-l)
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Higher-form symmetry

e Examples:

(1) Pure 4D U(1) Maxwell theory has U(1) x U(1)n, 1-form symmetry
(2) Pure 4D SU(N) Yang-Mills theory has Zy 1-form symmetry

(3) 3D U(1)x Chern-Simons theory has Zj 1-form symmetry

(4) 6D (2,0) theory has 2-form symmetries
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Higher-group symmetry

e What is a higher-group symmetry?
e Step One: how to think a group as a 1-category (object+morphisms):
glead

ged

goh=gh (2)

e A group is a 1-category with only one object and invertible morphisms

o Generalizations
2-category: object, morphisms, 2-morphisms (between morphisms)
n-category: object, morphisms, 2-morphisms, ..., n-morphisms
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Higher-group symmetry

e An n-group is an n-category with only one object where all
k-morphisms (1 < k < n) are invertible.

e The consistency relations are complicated, and there are different
versions of n-groups with different associativity

e We first talk about 2-groups, which are invertible 2-categories with only
one object.

(1) Strict 2-group (strict 2-category): morphisms are associative

(2) Weak 2-group (bicategory): morphisms are not associative
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Strict 2-group

e One object e, morphisms —, 2-morphisms =
e All invertible, identity exists for morphisms and 2-morphisms

e Horizontal composition is associative:

f g f-g
TP - P
[,/ 1/ | ’/

g g

e Vertical composition is associative:
hORINE S - . :
B
h h

e Compatibility:
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Strict 2-group

e Equivalent algebraic formulation: crossed module (G, H, 9, >)
(1) G and H are groups

(2) 9: H— G is a homomorphism

(3) > : G —Aut(H) is a group action of G on H

e Additional constraints for all g € G, h, ' € H:

d(gr>h)=g(dh)g™ (3)

(Oh)>h = hh' A1, (4)

e Remark: the original notion of 2-group in the construction of 2-gauge
theory by (Baez, Schreiber 04"). ..
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Weak 2-group

e However, strict 2-group is not often used in the generalized symmetry
literature of 2-group symmetries. G and H are NOT actual symmetries!
e Physicists instead use weak 2-groups (Cordova, Dumitrescu, Intriligator
18')(Benini, Cordova, Hsin 18')...

e A weak 2-group is defined by the data (MNy, My, p, 5)

(1) Ny, My are groups

(2) p: Ny —Aut(MN,) is a group action

(3) B € H(BMNy,My) = H3 (M1, My) is called the Postnikov class
(element of twisted group cohomology)
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Physical Meanings

(1) My: O-form symmetry generated by cod-1 top. operator
(2) My: 1-form symmetry generated by cod-2 top. operator
(3) p: My =Aut(My):

O
Pa(@ acll

(4) ﬂ S HS(Bnl,nz), g,h,k S I'Il, B(g, h, k) S |_|2:

g h k g h k

L]
(g, h.k)

ghk ghk

o A weak 2-group (M1, My, p, B) is called split (non-split) if 5 =0 (3 0).

Yi-Nan Wang Understanding Higher-Group Symmetries 12/33



Physical Examples

(1) 5d SU(2)o SCFT with My = SO(3), My = Zj,, and a non-split
2-group symmetry (SO(3),Zy,id., B). 8 # 0 € H3(BSO(3),Z,) = Z,.
(Apruzzi, Bhardwaj, Oh, Schafer-Nameki 21')(del Zotto, Garcia-Extebarria,
Schafer-Nameki 22'). ..

(2) 4d QED type examples: starting from 4d U(l)(:) x U(1 )(0) global
symmetry with mixed 't Hooft anomaly. Gauge U(1)(C0) — New U(1 )fg)
magnetic 1-form symmetry, and a non-split 2—group symmetry

(U(D)a, U(1)B,id., k), k € H3(BU( ), U(1)) = Z. (Cordova, Dumitrescu,
Intriligator 18'). ..

(3) In condensed matter physics, non-split 2-group (non-zero ) —

obstruction to symmetry fractionalization (Chen, Burnell, Vishwanath,
Fidkowski 14"). ..

Yi-Nan Wang Understanding Higher-Group Symmetries 13/33



Strict and Weak 2-groups

e Recap: we have two versions of 2-groups
(1) Strict 2-group: (G, H,0,1>)
(2) Weak 2—gr0up: (I_|17 n2»P»B)

e Questions:

(1) How to relate them?

e (G,H,0,>) — (My, Ny, p, 5): unique
(

° |_|1,|'|2,p, )stnctlf/cat/on(G H (9 ): non-unique

(2) Why use the strict 2-group?

e The formulation of strict 2-group gauge theory in real space & path
space is well established (Baez, Schreiber 04'). ..

e Easier to describe matter fields (2-matter) and SSB. (Liu, Luo, YNW
24'). ..
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Strict to Weak

e Now we discuss the algebraic relations between strict and weak
2-groups
e Exact sequence:

1M —H-256-2n —1. (5)

(1) The “actual” 0-form symmetry: M; = G/im(0)
(2) The “actual” 1-form symmetry: My = ker(9)
(3) Group action > : G —Aut(H) naturally induces p : My —Aut(,)
(4) Postnikov class 8?7 (Brown 82')...
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Strict to Weak

e Example: G=H=7Z,=1{0,1,2,3}, 0:a—2a,i:a—2a, p: (mod
2)
[ ] |_|1 = Z4/1m(6) = ZQ, |_|2 = ker(@) = ZQZ

157, 2372, 237,75V 7, 1. (6)

o Aut(Zz) =1, hence p is trivial

o H3(BZ3,7,) = 73, two possibilities:

(1) Split 2-group, B =0 € H3(BZy,75) = Z»

(2) Non-split 2-group, 3 # 0 € H*(BZ2,7Z,) = Z»

e Question: what determines 3 in the strict language?

Yi-Nan Wang Understanding Higher-Group Symmetries 16/33



Computation of

iix2 (mod2)

1%22—)24 Z4 Zo — 1.

e Pick a cross-section function s : [} — G s.t. pos =id.

o Define f : My x My — G with

s(g)s(h) = s(gh)f (g, h)

2 g=h=1
f(g,h) =
(g:h) { 0 other cases

e Uplift fto F:My xMNy—H: OF=F

F(g’h):{ 1 g=h=1

0 other cases
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Computation of

1572, 287,24 7,7 7, 1.

e Failure of cocycle condition for F:

(s(g) > F(h, k))F (g, hk) = i(5(g, h, k))F (g, h)F(gh, k) ,

e 3: 1y x My x My — MMy: Postnikov class
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Computation of

157, 237,237,707, 1. (12)
e Failure of cocycle condition for F:
(s(g) > F(h, k))F(g, hk) = i(B(g, h, k))F(g, h)F(gh, k), (13)

e 3: 1y x My x My — MMy: Postnikov class
e The choice of 3 is encoded in the group action > : G —Aut(H)!
(1) If the group action ©> is trivial: at> b= b (a,b € Z,4), then
B(g, h, k) =0 — split 2-group
(2) If the group action 1> is non-trivial: at> b= (2a+ 1)b (a, b € Z4),
then
Bl(g,h, k) =ghk (g,h,k=0,1) (14)

Non-split 2-group with non-trivial 5!
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Strictifications

o (Mg, Nz, p,B) strictiicgtion (G,H,d,>): non-unique
(1) Strictification of (My, My, p, B8) = (Z2, Z3,id., 8 # 0):

157,237, 2237, ™7, 1.

with a non-trivial group action at> b = (2a+1)b
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Strictifications

strictification

e (My,Mayp,B) " — " (G,H,d,>): non-unique

(1) Strictification of (My, My, p, B8) = (Z2, Z3,id., 8 # 0):

152 232 232, ™% 7, 5 1. (15)

with a non-trivial group action at> b = (2a+1)b

e For a split 2-group (My, My, p, B) = (Z2,Z5,id., B = 0), we can just use
the trivial sequence

1572 57, 2872, @57, 5 1. (16)
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Strictifications

(2) The case of 5d SU(2), theory, (My, My, p, B) = (SO(3), Zy,id., 8 # 0)

1575 2% 7, 2 sU(2) — S0(3) — 1. (17)

e G = 5SU(2), H = Z4, no need to use a non-trivial group action >
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Strictifications

(2) The case of 5d SU(2), theory, (My, My, p, B) = (SO(3), Zy,id., 8 # 0)

12 3 7, 25 sU2) — SO(3) — 1. (17)
e G = 5SU(2), H = Z4, no need to use a non-trivial group action >
e CB description: U(1) gauge theory+ matter:
‘ U(l)gauge U(l)flavor
f : Gauge W — boson -2 1 (18)
e : Flavor W — boson 0 -2

e Naive flavor symmetry rotating f and e + f is G = SU(2), however the
center Zy C G = SU(2) is a part of gauge symmetry!
e The actual flavor symmetry is Iy = G/Z, = SO(3).

e What about H = Z4? All charged matter has integral charge under
1
2
from the exact sequence:(Apruzzi, Bhardwaj, Oh, Schafer-Nameki 21')

(U(1)gauge + 2U(1) flavor)- Crucial in identification of non-trivial 2-group

1—Zp — 7y —7Zp—1. (19)
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Strictifications

(3) QED type model: (My, M2, p, B) = (U(1), U(1),id.,x € Z)

1 U1) 5 u)xz -5 z.u1) 2 ud) -1 (20)
d(e*™@ b) = (b,0). (21)
(a’ e27rib) > (e27ric7 d) _ (e27TI.(C+bd)’ d) ) (22)

e 7.U(1) is a central extension of U(1) by Z, group law:

(a+c, bty (b4 d < 1)

. . (23
(a+ ¢+ k, e (b+d)y  (otherwise) (23)

(a7 e27rib) + (C, e27rid) _ {

(4) For general weak Lie 2-groups, strictification not necessarily exists
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Strictification of gauge fields

e Derived the strictification of weak 2-group gauge fields

(a, b) strictificgtion (A, B) (assuming ker(9) is abelian)

e Discrete 2-groups: putting on a triangulated space, reproduce the
0-form gauge transformation A\ € G:

A,‘j — )\,‘A,‘j/\j_l , B,‘jk — A\ D> B,‘jk (24)

e The 1-form gauge transformation A € H:
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Physical Applications

e What can we do with strict 2-group symmetries?

e Landau-Ginzburg (LG) paradigm of SSB:

(1) Regular 0-form symmetry, e.g. G = U(1), introduce charged matter
field ¢ under a representation of U(1), i.e. R: G — Vect

S— / déx((D,u0) (D 6) + V() , V(6) = ] + Ag|*  (26)

e Minimizing V(¢), breaks G = U(1) — 0.
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Physical Applications

e What can we do with strict 2-group symmetries?

e Landau-Ginzburg (LG) paradigm of SSB:

(1) Regular 0-form symmetry, e.g. G = U(1), introduce charged matter
field ¢ under a representation of U(1), i.e. R: G — Vect

S— / déx((D,u0) (D 6) + V() , V(6) = ] + Ag|*  (26)

e Minimizing V(¢), breaks G = U(1) — 0.
(2) 1-form symmetry

o Background gauge field: B,

e Charged matter? Wilson loops!

®(C) = trr(P exp(?(c A)) (27)

e How to write down a Lagrangian LG model for 1-form symmetry?
Mean String Field Theory! (Igbal, Mcgreevy 21°)
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Physical Applications

o Consider the path-space (loop-space) P(M), the partition function is
(Igbal, Mcgreevy 21")

= exp | i 1 s f
z~ [18)29 p< /P(M) e # ¢s(De) /(D) + V(<D)> (28)

e Covariant derivative with area derivative

0
D == W - B/“, (29)

e Discussions of SSB for 1-form symmetry: similar to 0-form symmetry
e Area law: no SSB, Perimeter law: SSB

e Open question: how to derive the mean string field theory effective
action for Yang-Mills theory?
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Physical Applications

(3) 2-group symmetry

o Background gauge fields (strict): A,, By,

e Charged matter? 2-representations of 2-group G: a functor G — 2Vect
(“Higher-charges” (Bhardwaj, Schafer-Nameki 23))

e Higher-representation theory is subject to active research in
mathematics!

e 2-vector space (Kapranov, Voevodsky 94’ “Tetrahedron equations”)

e 2-reps. for weak 2-groups (Elgueta 07’)

o PhySiCS: (Bartsch, Bhardwaj, Bottini, Bullimore, Decoppet, Delcamp, Ferrari,

Grigoletto, Pearson, Schafer-Nameki, Tiwari, Yu...)

e What is a good notion of 2-representations to describe SSB of strict
2-group symmetry?
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Automorphism 2-representations

e Consider an algebra T, we can define the following automorphism
2-group Aut(T) (Kristel, Ludewig, Waldorf 22', 23'):

1 Z(T%) =5 v P228% Aur(1) 25 Out(T) -1 (30)

o G = Aut(T): Automorphism group of T

e H = T>: invertible elements of T

e [M; =0ut(T): Outer automorphism group of T

o [y = Z(T*): Center of T*

o We use the automorphism 2-representation (as a strict intertwiner)
G — Aut(T) for some algebra T
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Automorphism 2-representations

e 2-matter of 2-groups take value in T! T naturally has some physical
meaning!

o Take the example of (G, H,0,>) = (Z4,Z4, X2,1>), we can take

T = C|[Z4], the group algebra of Zj.

e An element of T has the form of a combination of Wilson loop
operators

(a,b,c,d) < aWo + bW1 + cWo + dWs , Wi - W, = Wiy (moa 4y (31)

e Multiplication rule of T = C[Za]:

a ap ajay + bidr + c1co + dibo
by | | b2| _ [aiba+biax+ adr + dic (32)
a C ajc + biby + ciax + dida
dl d2 31d2 + b1C2 + C1b2 + dlaz
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Automorphism 2-representations

e Action of g € G =Z4 on & = (a, b, ¢, d):

(aa b, c, d) (g =0, 2)

(a,b,c,d) —>{ (ad,c,b) (g=1,3)

o Action of h€ H =174 on ® = (a,b,c,d):

(a,b,c,d) — ho(a,b,c,d) = (a,i"b,(—1)"c,(—i)"d).
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LG model for 2-group symmetry

e 2-group gauge fields As g defined in P(M)
e Path-space effective action with 2-matter ¢ € C[Z4]

2= [17A12812 (94
1 1
exp i/ Try| — = |Fal? 4+ ——=(d4®)T(d4®) + V(o
{ ) T{ 2g2| Al L(C)(A )1 (da®) + V( )}
i [ N0 0(8) - Fa))
M
(35)
e e.g. for T = C[Z4], we can write down some V(®) that's invariant
under the action of G and H
e For simplicity turn off the gauge fields A
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LG model for 2-group symmetry

o For example V(®) = r|®|2 + u|®[*, SSB patterns:
(1) The entire 2-group symmetry is preserved:

¢ = ﬁ(l,0,0,0) (36)

(2) My =My = Zj; is preserved, but the Postnikov class § is trivialized:

cb:,/%r(a,o,b,O),|a|2+|b|2:1,a,b7éo. (37)
QH:Z4—)ZQ

e After an SSB, non-split 2-group — split 2-group!
(3) Only preserves the 0-form symmetry My = Z;

¢:,/_Tr(a,b7c7b), a2 +2(bP+|cP=1, abc#0. (38)
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3-groups

e 3-group: invertible 3-category with only one object

e Weak 3-group: Gz = (M, M2, M3, p, 5,7)

(1) Ny, My and M3 are 0-form, 1-form and 2-form symmetries
(2) p: My — Aut(My), My — Aut(Ms).

(3) B € H3(BNy,MNy), v € H*(BG,,M3) are Postnikov classes,
G, = (M1, Ny, p, B) C G5 is the sub-2-group.

e Strictification? Only to a semi-strict 3-group, i.e. a 2-crossed module!
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3-groups

e Semi-strict 3-group: (G, H,L,01,0>,>,{—,—}).

(1) G, H, L are groups

(2) 01 : H— G and 9, : L — H are homomorphisms

(3) > : G — Aut(H), G — Aut(L) are group actions

(4) {—,—}: Hx H— Lis called the Pieffer lifting (not necessarily
bilinear)

e Subject to many consistency conditions

e In our work, studied the strictification of weak 3-groups with either
My =0 or My =0, as well as the gauge fields (Liu, Luo, YNW 24"). ..

e Algebraic strictification of a general weak 3-group is still unknown
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Summary and Outlook

o Discussed the strictification of weak 2-groups/3-groups

e Formulated the strictification of 2-group/3-group gauge theory

e Formulated 2-matter of 2-group with automorphism 2-representation
e Constructed LG model for 2-group and discussed its SSB

e Future directions:

e Further investigate the algebraic formulation of 3-representations ...
e Strictification of general 3-groups and 4-groups ...

e How to quantatitvely write down the LG model of

higher-form /higher-group symmetry for a given QFT?

e Realization of higher-matter in lattice models

e Thank you for the attention!
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