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From OPE to Anomalous dimensions

Renormalization to higher loops

o Renormalization group flow describes the change of physical quantities with
energies and scales. In high energy physics, renormalization is required to
enhance the precision of perturbative computations. Some processes in LHC,
like the decay of Higgs particle to gluons and bottom quarks, can be sensitive to
the 5-loop beta functions of gauge coupling.

o The critical exponents of second order phase transition are related to the
anomalous dimensions of operators in scalar field theories at the Wilson-Fisher
fixed point:

1
lz— 9y~ (1)
Statistical systems : (®(z)) ~ |T— T|”

Quantum field theories : (O(2)O(y))

@ Resumation is required in order to make this comparison. So it is perferable to
compute the anomalous dimensions to higher loops.
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Higher loop UV divergence

o The degree of difficulty in the evaluation of Feynman integrals depends on the
number of scales and loops.

o The scales includes mass m? and inner products of external momenta p?, p; - p;.

dPl 1
—_— 2
= =)+ 20+ 9 (- pr F P2t o) @

o At higher loop level (L > 4) , only single scale integrals can be evaluated
systematically. So any higher loop computations should be reduced to the
computation of single scale integrals.

L =2:5 scales
L =3: 2 scales (3)
L > 4 : single scale




i34t From OPE to Anomalous dimensions

Massless propagator integrals

o Two types of single scale integrals were used in the evaluation of higher loop UV
divergence.

o In the R* operation method [Vladimirov 1980, Chetyrkin, Smirnov 1984, Herzog,
Ruijl 2017], the UV divergence of L-loop integrals are reduced to the L — 1 loop

propagator type integrals:
— — _O_
m

Figure 1: From vacuum integrals to propagator integrals.

@ QCD 5-loop beta functions [Baikov, Chetyrkin, Kuhn 2016, Herzog, Ruijl,
Uedaa, Vermaserena, Vogtc 2017], ¢° 5-loop [Kompaniets, Pikelner 2021], ¢
anomalous dimension 5-loop [Jin, Li 2022]

e The R* operation requires sophisticated subtraction of IR and UV sub
divergences, and it is not efficient when dealing with tensor integrals. It can
hardly be used in the computation of anomalous dimensions in gauge theories.
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Massive vacuum integrals

o Alternatively, one can add the same mass to all propagators, and reduce the
computation of UV divergence to the computation of massive vacuum integrals
[Chetyrkin, Misiak, Munz 1997].

@ The 4-loop beta function of Gross-Neveu model[Gracey, Luthe, Schroder 2016].
e The 5 loop beta function of QCD [Luthe, Maier, Marquard, Schroder 2017].
e The method is "global” in that one does not need to subtract sub divergences.

o The bottleneck of this method is the computation of master integrals. By now
some of the 5-loop master integrals are still unknown [Luthe 2016].

D @ & C

Figure 2: 5-loop vacuum graphs with 12 propagators.
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New method based on OPE

e We develop a new, more efficient method based on OPE.
¢(#)21(0) = > Cra() 0a(0) (4)

o The OPE coefficients contains the renormalization factors of 2y and O,,
Cra(z) = Z1Tip(2)(Z ") pa (5)

@ At the same time, the OPE coefficients are UV finite quantities, and its UV
finiteness can be used to fix 7y, if Z, are already known,

Cia(z) = UV finite (6)

e The new method is ”global”. No need to subtract sub divergences.

e Tjs(x) are propagator type integrals. The IBP reduction is relatively simple, and
their master integrals have been computed (analytically) to 5-loop [Georgoudis
et al. 2021].
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Operators and anomalous dimensions

@ The most simple operators are scalar operators without Lorentz indices. For
example, dimension-6 operators in the ¢® theory are

2
Q= (56, 2670, 965°0,(0°)0) (7)

o The operators are renormalized by quantum corrections, QF = Z,,Q%. Q9 are the
bare operators

Q0 = Q,‘ (8)

=0, 990

o The renormalization flow of QF is characterized by their anomalous dimensions

YiJ: R
aQ
L =y, QJ,
dlnp
9)
_ dZIK( )
YL din s KJ
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The Z factors in correlation functions

@ The Z factors are determined by the UV finiteness of correlation functions:

<Q?(PO)¢(P1) e ¢(pn)> = UV finite (10)

o In Z factor dependence of correlation functions can be clear elucidated using the
bare correlation functions. Since the bare Lagrangian only contain bare coupling
constants and other bare parameters like bare mass, and the bare operators are
also constructed from bare coupling constants, and bare fields. Therefore, the
bare correlation functions is a function of bare coupling constants, and do not
contain any Z factors,

Gil (90) = (2 (po)do(p1) -~ d0(pa)) (1)

o The correlation functions can be written as a function of go, times some overall
Z factors

(2 Bo)o(p1) -+ 8(pa)) = Z1sZ,* G (g0) (12)
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The Z factors in correlation functions

@ The full correlation function can be written as the product of amputated
correlation function and 2 point correlation functions associated with the
external legs:

(2 m)olpn) -+ 63 = (AF0)ton) -+ ()™ TI{#(p)6(—p))

i=1
(13)
@ The bare correlations can be decomposed in the same way,
G (90) = G (90) [ [ A (pis 90) (14)
i=1
in which the bare two point functions A(p;, go) satisfies

(6()o(=p)) = 2, Db, 0) (15)

o The amputated correlation functions contain the following Z factors,

amp 2 ~am

(2 (po)o(p1) -+ 6(pa)) " = 2125 G (q0) (16)
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The Z factors in correlation functions

@ The 1PI correlation functions satisfy the same relation:

1PI n
<Q?(P0)¢(p1) e ¢(10n)> = 2122 G (g0) (17)
o This relation also holds without the operator,
1PI n
(o) o)) =75 G\ (q0) (18)

o From now on, all correlation functions means 1PI correlation functions.
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The Operator Product Expansion (OPE)

o The physical effects of two adjacent operators can be described by local
operators[Wilson 1965] :

QI ZC” x) a/ 0), when z— 0 . (19)

o Besides the application in conformal field theories, OPE is also vastly used in
high energy physics and nuclear physics, to study processes like deep inelastic
collision and heavy quark decay.

o Translate to momentum space,

QF (p)QF(k—p) ~ Y C1s*(p) Oa(k), when p — oo . (20)
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The OPE of an operator and a fundamental field

o We consider the OPE of an operator and a fundamental field:
¢(p)Q7' (k— p) Z Cra(p (21)

e This gives the following relation between correlation functions:

(SR (k= D)bhr) - d(kn) ) ~ > Cualy (D OEWo (k) d(ka)) . (22)
o In terms of bare correlation functions,

(6(PF (k= p)o(k) - o(ks)) = Z Z 211G (0)

B (23)

(LW -+ dka)) = 7> Zap GS (90)
B
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The large momentum expansion

o The LHS correlation function G?(go) is an integral depending on a large
momentum p, and some soft momenta k;, and can be evaluated with the help of

the large momentum expansion:

G (ps ki go) ~ > Ta [G?(p; 0; 90)] Ga (k3 go0) (24)

@ 7, is the Taylor expansion operator corresponding to the operator O.
Ta [G?(p; 0; go)} only depend on a single scale p?.

e From which we derive the following expression of the OPE coefficients

Cra(p) = Z paZ1sTp [GJ (go)} (25)
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7 factors from OPE coefficients

@ The UV finiteness of OPE coefficients give constraints to the combination
1
Z; (Z_l)ﬁaZU.

Cra(p) = Z paZ1sTp [GJ (go)} (26)

o If Z; and Z.p are already known, the relation gives constraints to Zj;.

o A properly chosen set of O, completely fixes Z;;.
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The large momentum expansion of Feynman integrals

o If a Feynman integrals contains two or more distinct scales, the asympotic
expansion about the large scale can be performed using some graphcal rules
[Chetyrkin 1983, Chetyrkin, Smirnov 1984].

o Consider the following Feynman integral, in which ¢1 and g2 are large momenta,
@ P @ P @ P @ DL
a ¢ P2 a ¢ P2 @ ¢ P2 a P2
Figure 3: Large momentum expansion of Feynman integrals.

1
= q)?(L+p1+p2)? (L +p2)?
o Split the Feynman diagram into the large momentum part(bold line in the RHS
graph) and small momentum part, and perform a Taylor expansion to the large
momentum part:

1 20-q — 02 ) 1
hox=( 5+ —B2"" ... ) : 28
b (q% (@) BT+ p) (0T pa)? (28)

Tnox = (27)
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The large momentum e

o The large momentum part becomes a propagator type integral, and the small
momentum part has one less external legs than the original integral:

q2 p1 q2 P q2 Y41 q2 P
— —
0
l l l
Q1 p2 Q p2 q1 p2 q1 p2
q2 p1 q2 p1
/4 —
ﬁ_ !
q1 P2 q1 P2

Figure 4: Large momentum expansion.
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The large momentum expansion and OPE

@ The original Feynman diagram correspond to the 4 point correlation

functi0n<§21(q1 )QJ(QZ)¢(P1)¢(P2)>

q2 p1 q2 p1

q p2 q P2

Figure 5: Large momentum expansion and OPE.

o After the expansion, the two graphs correspoind to OPE coefficients and
<Oa(q)¢(p1)¢(pg)>, respectively.

o Therefore, the OPE coefficients can be obtained by evaluating propagator type
integrals.
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The 5-loop anomalous (hmenﬂons of $€ operators in O(N) ¢* model

o Using this method, we compute the 5-loop anomalous dimensions of ¢¢
operators in O(N) ¢* model.

o The ¢% operators refer to the symmetric traceless operators constructed by Q
O(N) scalar fields ¢;, and they are equivalent to

69 ~ 5& (29)

in which <pQ = qi¢s, and ¢; satisfies ¢¢ = 0.
o ¢ does not mix to any other operators, therefore its Z factor can be fixed by a
single OPE coefficient:

520)9(x) ~ T2 59 (0) (30)

@9

PQ
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The 5-loop anomalous dimension in 4-D O(N)

e We computed the propagator integrals using Graphical function [Schnetz 2014],
and reproduced the previous known result using R* operations [Jin, Li 2022].

o The major computational time was spent on the evaluation of Graphical
function, which runs for several hours on a personal computer. In comparison,
the R* operation approach required super computer clusters.
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The 4-loop anomalous dimensions in 6-D O(N) ¢® model

e 6-D O(N) ¢* models is given by the following Lagrangian :

_1 N2 1 2 g 2 hg
L= 5 (0¢:)” + 2(80) 20’@ i (31)
o Following the same routine, we computed the 4-loop anomalous dimensions of

¢% in this model:

29239 wt 29(s —-69419 7t 35(s
559872 8640 1728) + 839808 ' 6480 T 1296)]
6665 1t 157(s 5 —487 ot 79¢s

7776 T 240 144 )+ @ 1728 1080 ' 216 )
—94597 7wt 97(s

186624 270 T 144

Ya = g2h6[Q2(

QR (32

+ & )] + 152 more terms

@ Our results are consistent with the know results in the large N limit [Vasiliev,
Pismak, Khonkonen 1981].
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Operator mixing

e More OPE coefficients are required to fix the Z factors in the presence of
operator mixing. Let us go back to the following operators in ¢* model :

2
Q= (56 26°0°, 960°0,(0°)9) (33)
e The OPE is given by
¢(P)Q (k= p) =Co(NP*$(k) + Ca(r)p"Dud(k) + Ca(r)0°G(k) + Ca(r)din(k)
upv

P 1 )
+ C5(r) P [aqu(k) = 5 qs(k)] s

(34)

2
in which r=1n =%-.
"

o It turns out that C) to Cy are enough to completely fix Zy;.
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Operator mixing

e All OPE coefficients of operators with higher dimensions and/or higher tensor
ranks contains p% poles, which corresponds to sub-divergences.

o In general, we only need to consider the operators with
No+ Ro < Ao —2 (35)

in which Ro is the tensor rank of O. Their Z factors are easier to compute than
that of Q.

o Start with simple, lower dimensional operators, we can compute the anomalous
dimensions of higher dimensional operators recursively.
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From OPE to beta functions

o The beta functions in ¢? model can be obtained from the OPE of two
fundamental fields,

$(2)$(0) ~ O(2)¢R(0) + - - . (36)
e This gives the following relation between correlation functions :
(9(0)6(@)6(y)o(12) ) ~ C(@) (h(O)P(y1)$(3a) ) + -+ - (37)

@ The LHS correlation function has the overall factor of
Zig0 = Zygit™ (38)

The RHS correlation function has the overall factor of Z,2 Zy.
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From OPE to beta functions

e The OPE coefficient is given by

Z ~2¢€
Clp) = %sz(p, —p,0,0; 9o0) (39)
2 2o

Z4 can be obtained from the finiteness of the OPE coefficient, provided that Z,»
and Z, are already known.

o The story is even simpler in ¢® model. The OPE is,
P(2)9(0) ~ C(2)$(0) + -+ - . (40)
The OPE coefficient is given by

Z ~€
C(p) = %Gs(p, —p,0; g0) (41)
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Apply to gauge theories

o In gauge theories, the fundamental field A}, is not a gauge invariant operator.
One way to preserve the gauge symmetry is using the background gauge. One
expand the gauge field into the background part A and the fluctuation part A

A= A+A. (42)

and impose background gauge to A. The gauge symmetry of background field is
still explicitly preseved.

o The background field A corresponds to the soft field, and A corresponds to the
hard field. The OPE of hard fields produces gauge invariant soft operators,

A (2)AL(0) = Ca(2) Oaun(0) (43)

o The soft operator basis contains Wilson-lines which are only gauge invariant
when operators with different dimensions are combined together,

W]z, 0] = Pexp [ig/: dsx“AM(sac)] = dg7* A, (0) + - - - (44)
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Conclusions

We develop a new method of computing renormalization factors using OPE
coefficients, and computed the 4 and 5 loop anomalous dimensions of ¢%
operators.

The method is more efficient than traditional R* operations and massive vacuum
integral method, and can be applied to integrals with more scales and higher
tensor ranks.

We hope to compute the anomalous dimensions of higher dimensional operators
in gauge theories in the future.

Thank you for your attention!
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