Trans-series for Hofstadter Butterfly
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Hofstadter butterfly

® In 1979, D. Hofstadter ({%1t£JX) considered an interesting 2d electron model in a
magnetic field. [Hofstadter'79]

® How to explain? Relation with supersymmetric field theory! [Hatsuda Katsura Tachikawa'16]



Hofstadter butterfly



2d electron in lattice with magnetic field

® 2d electron in a square lattice with spaceing a: by tight
binding approximation

Pxa Pya
H=2 — +2 —
cos n + 2cos =
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2d electron in lattice with magnetic field

® 2d electron in a square lattice with spaceing a: by tight
binding approximation

Pya
h

® Adding a uniform and perpendicular magnetic field B / /

BT =p+eA / /
which satisfy commutation relation .
(A, M,] = —ike(d A, — d,A,) = —iheB / /

Hamiltonian of electron becomes

H=2 — +2c
cosh—i- cos

—

H:e%nx+e7%nx+eg Yy + e ‘gn



Harper’s equation

® Replacing (a/R)ly,, by operators x,y
H _ eix 4 efix 4 eiy + efiy

with the commutation relation

ia’eB . :
[x,y] = = i magnetic flux through a plaquette B

Equivalent to a 1d relativistic QM model where ¢ is h. I / /
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Harper’s equation

® Replacing (a/R)ly,, by operators x,y
H _ eix 4 efix 4 eiy + efiy
with the commutation relation

ia’eB . .
[x,y] = = i magnetic flux through a plaquette B
Equivalent to a 1d relativistic QM model where ¢ is h. I / /

® Harper's equationn / /
Y(x + @) + P(x — @) + 2 cos(x)ih(x) = Ev(x)

Introducing x = n¢ + ¢ and 1,(6) = ¥(ngp + 9)

Ynt1 + Yn_1 + 2cos(ng + 6), = Ev,



Energy spectrum at rational flux

® The model simplifies when flux is rational [Hofstadter'79]

¢:27ra:277g, P,ReN,(P,Q)=1



Energy spectrum at rational flux

® The model simplifies when flux is rational [Hofstadter'79]
¢:27ra:2ﬂ'g, P,ReN,(P,Q)=1
® Harper's equation is periodic n — n+ Q. With Bloch wavefunciton
Vn(0) = € un(8, k) W/ tnyq(d, k) = un(6, k)
energy spectrum is computed by the polynomial characteristic (secular) equation

FP/Q(E75, k) = det(HQ = EIQ) =10

with
2 cos & el e ik
e ik 2cos(d + 27rg) ek
Ho(6, k) = e ik 2cos(d +4rg) e

ek e~k 2cos(d 4 27(Q — 1)%)



Energy spectrum at rational flux, two Bloch angles

® |t can be shown [Hasegawa,Hatsugai,Kohmoto,Montambaux'90]
Fp/q(E,0,0) = 2(cos Qk + cos Qd) =: 2(cos O + cos b))

where 0y, 0, are on equal footing: symmetric, both periodic by 0, , — 0, + 2m.
® When ¢ =27P/Q, H =¢e* + e ™ + eV + e~V allows two Bloch angles in both directions,

identified with GX,Qy. [Duan,JG,Hatsuda,Sulejmanpasic’18]



Energy spectrum at rational flux, two Bloch angles

® |t can be shown [Hasegawa,Hatsugai,Kohmoto,Montambaux'90]
Fp/q(E,0,0) = 2(cos Qk + cos Qd) =: 2(cos O + cos b))

where 0y, 0, are on equal footing: symmetric, both periodic by 0, , — 0, + 2m.

® When ¢ =27P/Q, H =¢e* + e ™ + eV + e~V allows two Bloch angles in both directions,
identified with 0y, 0, . [Duan,JG Hatsuda Sulejmanpasic’18]

® Varying cos ), + cosf, € [—2,2], degree @ polynomial Fp,q(E,0,0) yields Q energy
bands.



Hofstadter butterfly

4
‘ ® Features of the energy spectrum
P> Rational vs irrational magnetic fluxes

» Fractal structure
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Hofstadter butterfly

® Features of the energy spectrum
P> Rational vs irrational magnetic fluxes
» Fractal structure

® Problems of the energy spectrum

» How to understand this picture? What is E as a
function of ¢? Highly non-perturbative!
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Hofstadter butterfly

4
‘ ® Features of the energy spectrum
P> Rational vs irrational magnetic fluxes

» Fractal structure

® Problems of the energy spectrum
» How to understand this picture? What is E as a

AN
¥

> N 4
2o S .‘w‘u»
* i | function of ¢? Highly non-perturbative!

S ® Results:

» Energy trans-series for ¢ = 27/Q that includes full
. - non-pert. corrections.
“ i - @ o » Reply heavily on relation with supersymmetric
Flux field theory!



Energy trans-series of Hofstadter
butterfly



Semi-classical analsys of energy series

® Hamiltonian for the Harper-Hofstadter model
H=e"+te ™ t+e¥+e ™™ [xy]=io.

® The perturbative energy series can be efficiently calculated by BenderWu package with

Landau level N = 07 ].7 2, ... [Bender,Wu'73; Sulejmanpasic,Unsal’'16; JG,Sulejmanpasic’17]
1 1
E(N,¢) =4— (1+2N)¢p + g(l + 2N + 2N?)¢? + —@(1 +2N)(L+ N+ N3 + ...



Semi-classical analsys of energy series

® Hamiltonian for the Harper-Hofstadter model
H=e"+te ™ t+e¥+e ™™ [xy]=io.

® The perturbative energy series can be efficiently calculated by BenderWu package with

Landau level N = 07 ].7 2, ... [Bender,Wu'73; Sulejmanpasic,Unsal’'16; JG,Sulejmanpasic’17]
1 1
E(N,¢) =4— (1+2N)¢p + g(l + 2N + 2N?)¢? + —@(1 +2N)(L+ N+ N3 + ...

® By path integral analysis of twisted thermal partition function, one finds that for
¢ =27/ Q, there are instanton and anti-instanton in both x- and y-directions
[Duan,JG,Hatsuda,Sulejmanpasic’18]

1/2
E((el)e )(N =0, ¢) = 8(cos by + cosb,) (j) e 5/?(1+..), S.=8C.
XUy i



Borel resummation and Stokes ambiguity

® Perturbative energy series is divergent

EO(¢) = and*, ax~ k!

. : BEO(Q)
® Method of (naive) Borel resummation

y(E(O))(qﬁ) — ¢! /0°° E(O)(C)e%/d)dC, E(O)(C) = Z %Ck




Borel resummation and Stokes ambiguity

® Perturbative energy series is divergent

Og) =D ang*, ax~ K

® Method of (naive) Borel resummation EOX(¢)
S(EO)(9) =67 / EO(Q)e=¢/?d¢,  EO(¢) = Tck S
° ’ N
c.

® As there exist singular points at A, 2A, ... along R", have to
use lateral Borel resummations which are ambiguous

7(F) ( = ¢ / )e —¢/9d¢

* Both .7*(E(®)(¢) have small imaginary parts.



Borel resummation of energy series

® As A =25, the singular points correspond to 2n-instanton
corrections,

FHEO) _ (VO — g f D 4 Fo

25, 48.C+




Borel resummation of energy series

® As A =25, the singular points correspond to 2n-instanton
corrections,

FHEO) _ p(EO) — o (D) E@) 4 B00)
® After including 2n-instanton corrections, Borel resummed
o . 25, 48,0+
energy trans-series is both real and unique O,
c-

FSENEO £ E@ 1) >0 are the same




Borel resummation of energy series

® As A =25, the singular points correspond to 2n-instanton
corrections,

FHEO) _ p(EO) — o (D) E@) 4 B00)
® After including 2n-instanton corrections, Borel resummed
o . 25, 48,0+
energy trans-series is both real and unique O,
c-

FSENEO £ E@ 1) >0 are the same

® The exact energy is Borel resummation of full trans-series
Eeo = SENEO® 4 EO £ E@ 4 )

with Stokes ambiguity € = =+.



Exact WKB method

® \WKB ansatz for the 1d non-rel. QM

Hx o) = B0, v =eso (5 [ Pxo)ex )

where

P(x,¢) = Z P.(x)¢",  Po(x) momentum

n>0
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Exact WKB method

® \WKB ansatz for the 1d non-rel. QM

Hx o) = B0, v =eso (5 [ Pxo)ex )

where

P(x,¢) = Z P.(x)¢",  Po(x) momentum

n>0
® Quantum periods [Voros'83]
» Perturbative quantum period Vi)
1 [
= f/ P(x, ¢)dx - " o
™ a E

» Non-perturbative quantum period

a3 k + |
q class. allowed  class. forbn
tp = —2|/ P(x, ¢)dx v
a

2)

10



Exact quantisation conditions

® Exact Quantisation Conditions (EQCs) usually take the form [Delabaere'92;

Zinn-Justin,Jentschura’04; . . .]
14 Va=FVY2 VY2 225 0

with Voros symbols

- t(E,$) _tp(E.¢)
]}A:e27rI 4, Vg=e b

® E.g. for cosine model
1+ VE (1 + V) — zmcose =0

11



Exact quantisation conditions

® Exact Quantisation Conditions (EQCs) usually take the form [Delabaere'92;

Zinn-Justin,Jentschura’04; . . .]
14 Va=FVY2 VY2 225 0

with Voros symbols
(E.) _p(E9)
Va = e2’” s Vg =e @

1+ V(1 + VB) — 24/ ViV cosd = 0

® This implies the universal structure of the full trans-series [van Spaendonck Vonk'23]

® E.g. for cosine model

co n—1

E(N,¢) = EO(N,$) + > " tnm(0xy, ) E™(N, )

n=1 m=0
with n-instanton corrections
9 \" (IEO(N,9)__riome
(n,m) _ =
gom = (2)" (2554 . to(N,6) = 5 +0(9)

where coefficient up, m» depends on Bloch angles 6y, 6, and Stokes ambiguity ¢ = £1. 1



5d SYM

® 5d A" =1 SYM with G = SU(2) on S* (radius 1) is described by Seiberg-Witten curve
e +e X +e +e ¥ —u=0 \=ydx
® In NS limit of Omega background, the curve is promoted to quantum operator

Hsym = e +e > +¢e +e ¥ —u, [xy]=ih.

12



5d SYM

® 5d A" =1 SYM with G = SU(2) on S* (radius 1) is described by Seiberg-Witten curve
e +e X +e +e ¥ —u=0 \=ydx
® In NS limit of Omega background, the curve is promoted to quantum operator

Hsym = +e "+ +e ¥ —u, [xy]=ih
® [nteresting physical observables: [See Wang Xin's talk on Monday]
» 1/2-BPS Wilson loop along S*

Wa(t,h) =) Wi(t)h®

n>0

> NS free energy

Fs(t,h) = Fa(t)

n>0

12



5d SYM and butterfly

® 5d SYM is closely related to Harper-Hofstadter: Hsyy is identified with Harper
equation by
vavh — iXaiya_d)

while [Hatsuda,Katsura, Tachikawa'16; Duan,JG,Hatsuda,Sulejmanpasic’18; See also Chen Jin's talk on Monday]

EO(N, ¢) =Wr(t = —¢v, i = —¢)

tp(N, ¢) :%FNS(t = —¢v,h = —9¢).

13



5d SYM and butterfly

® 5d SYM is closely related to Harper-Hofstadter: Hsyy is identified with Harper
equation by
vavh — iXaiya_d)

while [Hatsuda,Katsura, Tachikawa'16; Duan,JG,Hatsuda,Sulejmanpasic’18; See also Chen Jin's talk on Monday]

EO(N, ¢) =Wr(t = v, h = —¢)

tp(N, ¢) :%FNS(t = —¢v,h = —9¢).

® W, Fns can be computed efficiently via holomorphic anomaly equations, which allows
efficient calculation of EQ)(N, ¢), tp(N, ¢) as well. [BCOV'93; Huang Klemm'10; Krefl Walcher'10;
Huang,Lee,Wang'22; Wang'23]
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5d SYM and butterfly

® 5d SYM is closely related to Harper-Hofstadter: Hsyy is identified with Harper
equation by
vavh — iXaiya_d)

while [Hatsuda,Katsura, Tachikawa'16; Duan,JG,Hatsuda,Sulejmanpasic’18; See also Chen Jin's talk on Monday]

EO(N, ¢) =Wr(t = v, h = —¢)

to(N, 6) = Fus(t = —6v,h = ~0)

® W, Fns can be computed efficiently via holomorphic anomaly equations, which allows
efficient calculation of EQ)(N, ¢), tp(N, ¢) as well. [BCOV'93; Huang Klemm'10; Krefl Walcher'10;
Huang,Lee,Wang'22; Wang'23]
® Both Wg(t,n) and Fns(t, /) are divergent series, and we have a good understanding of
their Borel singularities as well as Stokes discontinuities, which are controlled by BPS
invariants of 5d SYM. [1G Marino'23; JG,Guo'24]
® This knowledge can be exported to Harper-Hofstadter!
13



Resurgent strcuture of Harper-Hofstadter

® The Borel singularity A corresponds to BPS state of D2
brane wrapping either P! of local P! x P! underlying 5d SYM

EO(¢)

14



Resurgent strcuture of Harper-Hofstadter

® The Borel singularity A corresponds to BPS state of D2
brane wrapping either P! of local P! x P! underlying 5d SYM

® Stokes discontinuity in terms of contributions from
individual singularities encoded by alien derivatives [JG,xu'24]

EO()
(#= ANEC ~(exp (3 Aen) —1)EO

Z A 24 34"

¢
A[AE(O) :ﬁﬂE(ze,O) -
' 2w A -

‘

AZAE(n,m) :ﬁﬂE(n+2f,m+1)
2w/

the Stokes constant S, is the BPS multiplicity
Sa=2x12(1) = 4.

14



Minimal trans-series

® Define minimal trans-series m 0 1 2
c© n'—1 Vim _ﬁ
EXD(0) =E@ + 3 Z o™ Ly ECHm) : )
min n,m V2. m o= — 82
W= = i 1 i
v _ i 1 i
3,m 6 82 4873
where
1 (=1y

Vo = HB"""H(l!Sl’Z!SL ), S = 7o

15



Minimal trans-series

® Define minimal trans-series m 0 1 2
(© ) oo n'—1 Vi,m —i
2", m’
ELD(0) =0+ 35 30 oy ) om gk
=L G ’ i 1 i
Vam %z Bx2 T @8x3
where
1 (71)1'71 N:0,¢:27T/].3
Vo = —'B,,_ym+1(1!51,2!52, ) S = = o
" J-em no SOEQING,-2)  FSOEQN,¢,+2)
* Real and ambiguity-free 0 3.545+3.794 x 1012|3545 — 3.794 x 10~12
_ —23: —23:
,5”(+)E(0) (72) y( )E(O) (+2) 2 3.545 —2.485 x 10721  3.545 4 2.485 x 10~<°i
oy Ity 4 3545 —6.074 x 10°33  3.545 + 6.074 x 10~ 33
6 3.545—2.074 x 10738  3.545 + 2.074 x 10~35;

15



Full trans-series

® Full trans-series in terms of minimal trans-series For ¢ =27/Q

oo n—1 m 0 1 2
Eex,yv (N ¢ mln + Z Z Wh, m X y Ergnr:nm)( ) W1 m €}

n=1 m=0 ’ us o?

h th e ° 5
such that 3 3
wam —24+& 0 &5

ESt (N, ¢) = S FEy, | 22(N, ¢).

0 = (—1)""*(cos by + cosb,)
® By comparing with numerical spectrum, we computed
Wn m(0x,y) up to 6-instanton order,

16



Full trans-series

e Full trans-series in terms of minimal trans-series For ¢ =2m/Q
co n—1 m 0 1 2
EOX,}M (N (ZS mln + Z Z W” ”7 X y Erswr:nm)( ) W1 m €]
n=1 m=0 ’ & o2
h th i ° 2
such that
’ wm -2+ 0 &
Eoxt +)
ny(N ¢) ng.w:Fz(N’ (b) o= ( 1)N+1(C050 + cos 6 )
® By comparing with numerical spectrum, we computed 1
Wn m(0x,y) up to 6-instanton order, Wn,m = mBn,mH(l!’la )
® and found a conjectural formula for all coefficients. A — o)
[JG,Xu'24] ; 4 arcsm A+ A
JZ2

16



Full trans-series

® Number of matching digits between Eng(N, ¢) and Y(i)ng_sz(N, @) as a function of ©
with increasing instanton orders.

2 » 2
104
10+ 1 F 1
................................................................................ 0 5» 0
-2 -1 1 2 -2 -1 1 2
¢ =2r/13,N =0 ¢ =2r/13,N =1

17



Conclusion and discussion

® We have found the full energy trans-series for
Harper-Hofstadter model when ¢ = 27/Q.

18



Conclusion and discussion

® We have found the full energy trans-series for
Harper-Hofstadter model when ¢ = 27/Q.

® The implied EQC [JG xu'24]

Dy, = 14V (14+V8)*~21/ V3 Vs (cos fy+cosb,) = 0. a-e

is a “double cover’ of the EQC for non-relativistic
cosine model

Dgz =14+ V(1 +Vs) - ZW(COSGX) =0.

which is related to that the BPS quiver of 5d SU(2) a E

SYM is a double copy of that of 4d SU(2) SYM.

18



Conclusion and discussion

® We have found the full energy trans-series for
Harper-Hofstadter model when ¢ = 27/Q.

® The implied EQC [JG xu'24] 4

DGix‘y = 1+V;\t1(1+vs)2—2\/ﬂ(cos fx+cosf,) = 0.

is a “double cover’ of the EQC for non-relativistic

Energy

cosine model

Dy =1+ Vi'(1+Ve) — 24/ Vi Vs(cosby) = 0.
which is related to that the BPS quiver of 5d SU(2) . )
SYM is a double copy of that of 4d SU(2) SYM. ‘ ‘

® Future: What about ¢ = 27P/Q and irrational ¢?
Perturbative expansion at ¢ = 27P/Q?

2
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Thank you for your attention!
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