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Motivations
• Defects are extended objects which lead to enrichment of theories.

• A wide range of applications both experimental (impurities, domain walls, boundary effects…) 
and formal (Wilson loops, D-branes, symmetry generators…).

• Also interesting objects to study in the conformal bootstrap program

- The insertion of (planar) defects breaks part of conformal symmetry.
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1
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̂μia

( |x⊥
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12 |2 )Δ̂a |x⊥
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- Still shares a lot in common with CFTs without defects (OPE, conformal blocks). Described by 
an enlarged set of CFT data.

Defect CFT data: {Δi, Cijk, Δ̂a, Ĉabc, ̂μia}



Motivations
- Simpler kinematics: an ideal testing ground for developing new bootstrap techniques. The 

simplest kinematically nontrivial case is 2pt function of bulk operators. 

- Given a theory it is also important to know how to compute the correlators (equivalent to 
knowing infinitely many CFT data).

- So far most progress is in the weakly coupled regime where standard techniques such as 
Feynman diagrams,  expansion, large  expansion apply.ϵ N

- In the strongly coupled regime where AdS/CFT is a useful description, almost nothing is 
known about holographic correlators in the presence of a defect.

- On the other hand, many existing tools (Lorentzian inversion formula, dispersion relation) 
generalize easily to the defect case, giving us good control of the CFT data. 

• By contrast, we know much less about correlators



Motivations
• This should be contrasted with the significant recent progress in the case without defects 

(higher-point, higher loops, stringy corrections…).

On-shell scattering 
amplitudes

• In this talk I will report bootstrap methods for computing holographic defect correlators, 
both at tree and loop levels. As a concrete example, I will focus on 6d (2,0) theory with  
half-BPS surface defects.

• New observables

Form factors with 
extended objects



Surface defect in 6d (2,0) theory
• The defect system can be realized using  coincident M5 branes and a probe M2 brane. The 

dual geometry is


               


and we consider the large  limit.

N

AdS3 ⊂ AdS7 × S4

N

• In the  bulk: we have 11d SUGRA (dual to 6d (2,0) theory).  AdS7 × S4

• In : this is the world-volume of M2 brane (dual to the surface defect). AdS3

There are localized d.o.f. which can couple to the bulk.

d.o.f.: KK modes of 11d SUGRA    1/2-BPS multiplets labelled by .→ k = 2,3,…
Scf primaries  (super gravitons): , in rank-  symmetric traceless rep. of .Sk Δ = 2k k SO(5)R



Surface defect in 6d (2,0) theory
• Large central charge expansion

+ + + +

+ + + + + …

defect
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c
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Superconformal kinematics
• We introduce R-symmetry polarizations to get rid of the indices of the super gravitons

Sk(x, u) = SI1…Ik
uI1…uIk , u ⋅ u = 0

• The defect breaks half of the supersymmetry

OSp(8* |4) → [OSp(4* |2)]2

SO(5) → SO(4)

fixed unit vector θ⏟
Supersymmetry:

R-symmetry

SO(6,2) → SO(2,2) × SO(4)
⏟ ⏟defect conf. group trans. rot.

spacetime

defect

xa=1,2

xi=3,…,6

V

Sk1

Sk2

SO(2,2)

SO(4)

θ
SO(4)

internal space



Superconformal kinematics
• The 2pt function can be written as a function of 3 cross ratios

⟨Sk1
Sk2

V⟩ =
(u1 ⋅ θ)k1(u2 ⋅ θ)k2

|xi
1 |2k1 |xi

2 |2k2
ℱ(z, z̄, σ)

Conformal: R-symmetry:

σ = u1 ⋅ u2

(u1 ⋅ θ)(u2 ⋅ θ) = − (1 − ω)2

2ω

x2
12

|xi
1 | |xi

2 |
= (1 − z)(1 − z̄)

zz̄

x j
1x

j
2

|xi
1 | |xi

2 |
= z + z̄

zz̄

V

0

∞

1

Sk1

Sk2

z

Fermionic generators imposes superconformal Ward identities [Meneghelli, Trepanier ’22]

ℱ(z, z̄, ω = z̄) = ζ(z) ℱ(z, z̄, ω = z) = ζ(z̄)

This also follows from chiral algebra [Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees ’13] 



Superconformal kinematics
• We can easily solve these constraints as

R =
(z − ω)(z̄ − ω)(z − ω−1)(z̄ − ω−1)

zz̄

Here

ℱ(z, z̄, ω) = ℱprot(z, z̄, ω) + R ℋ(z, z̄, ω)

(determined by superconformal symmetry)

ℱprot =
(z − ω)(z − ω−1)
(z − z̄)(z − z̄−1)

ζ(z) + (z ↔ z̄) (from the meromorphic chiral correlator)

All dynamical and unprotected information is contained in the reduced correlator .ℋ



Tree-level bootstrap
• Tree level: in principle can be computed by summing up all the Witten diagrams.

• A better strategy is bootstrap, similar to the defect free case [Rastelli, XZ ’16]. It turns out that 
tree-level 2pt functions are fixed by using only symmetries and consistency conditions [Chen, 
Gemenez-Grau, XZ]. I will present a position space version which can be done in 3 steps.

• The starting point is to write down an ansatz

+ +⟨Sk1
Sk2

V⟩tree = ∑ μB μd μc

• However, this requires to work out the complicated vertices and does not take advantage of 
the unbroken symmetries.

• Determined by selection rules: R-symmetry, vanishing of extremal couplings. Note fields 
exchanged in the defect channel has no KK modes. Moreover, we require no derivatives in the 
contact vertices.



Tree-level bootstrap
• The next step is to evaluate the ansatz

- It can be shown all bulk and defect exchange Witten diagrams can be written as a finite 
sum of contact Witten diagrams (a generalization of [D’Hoker, Freedman, Rastelli ’99]).

- The contact Witten diagram can be evaluated in a closed form as a 2F1 function

∝ 2F1 (Δ1, Δ2;
Δ1 + Δ2 + 1

2
; −

ξ + χ − 2
4 )

ξ =
(1 − z)(1 − z̄)

zz̄
χ =

z + z̄

zz̄

=
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Tree-level bootstrap
• Finally, we impose the scf Ward identity

∂zℱ(z, z̄, z) = 0

• Remarkably, this fixes all the unknown parameters up to an overall factor!

• But this overall factor cannot be arbitrary because the unknown parameters have the 
interpretations as OPE data. The same data can appear in multiple correlators

+ +⟨Sk1
Sk2

V⟩tree = ∑ μB μd μc

• Considering all  together allows us to reduce overall factors to that of , 
which can be fixed in terms of central charge.

⟨k1k2⟩ k1 = k2 = 2

λk1k2k × ak



Tree-level bootstrap
• The final answer takes the following form in position space

ℱ = ∑
k

λk1k2kak𝒫k + bk1𝒟bk2𝒟
̂𝒫 + ck1

ck2
(1 − 2σ)C2k1,2k2

• Note this makes the form of the contact part particularly simple.

λk1k2k3
=

2Σ−2Γ( Σ
2 )

π3/2

3

∏
i=1

Γ(
Σ − 2ki + 1

2 )

Γ(2ki − 1)
ak =

1
k

bk𝒟 =
(k − 1)(2k − 1)

2k− 1
2 πck

=
Γ(k)

2kΓ(2k − 1)

(bulk 3pt function coefficients [Corrado, 
Florea, McNees ’99, Basitanelli, Zucchini ‘99]) 

new CFT data from the bootstrap

The  case matches [Meneghelli, Trepanier ’22]k1 = k2 = 2

𝒫k sum of bulk exchange Witten diagrams of multiplet k + contact to improve Regge

̂𝒫 sum of defect exchange Witten diagrams



Intermezzo: Mellin space
• To better understand the analytic structure, we go to Mellin space. The standard Mellin 

formalism introduced by Mack and Penedones can be extended to include defects and 
boundaries [Rastelli, XZ ’17, Goncalves, Itsios ’18]. The Mellin amplitudes can be viewed as 
form factors with extended objects. 

ℱ = ∫
dδ dγ
(2πi)2

B−δDγℳ(δ, γ)Γk1k2
(δ, γ)

Γk1k2
(δ, γ) = Γ(δ)Γ(γ − δ)

2

∏
i=1

Γ( 2ki − γ
2 )

p1

p2

δ = p1 ⋅ p2

γ = − p2
1,∥ = − p2

2,∥- Contact diagrams are just constants. 
- Exchange diagrams have poles. 

B = ξ
χ = (1 − z)(1 − z̄)

z + z̄ D = 1
χ =

zz̄

z + z̄

• Translating diagram by diagram: the Mellin amplitude is a rational function.

: bulk OPEB → 0 : defect OPED → 0

• Witten diagrams are simple in Mellin space



Intermezzo: Mellin space
• An even simpler expression is given by the Mellin transform of the reduced correlator

ℋ = ∫
dδ dγ
(2πi)2

B−δDγ ℳ̃ (δ, γ) Γ̃ k1k2
(δ, γ) Γ̃ k1k2

= Γ(δ)Γ(γ − δ)
2

∏
i=1

Γ( 2ki + 2 − γ
2 )

• The reduced Mellin amplitude is related to the Mellin amplitude by a difference operator 

ℳ(δ, γ) = ̂R ∘ ℳ̃

R = B2D−2 + 2BD−2σ + 2D−2σ − 8σ + 4σ2

Each monomial  can be 
absorbed by a shift and becomes a 
difference operator 

BmDn

̂BmDn

• The reduced Mellin amplitude is a finite sum of simultaneous poles 

ℳ̃ (δ, γ, σ) =
2km−2

∑
i=1

km

∑
j=2

ℜij(σ)
(δ + i)(γ − 2j)

ℜij(σ) =
min (i,j−1)

∑
m=⌊ i

2 ⌋

bk1𝒟bk2𝒟(−1)ii( m
i − m)(2σ)m−1

2j!m!(k1 − j)!(k2 − j)!( j − m − 1)!



One-loop bootstrap
• At the next order in , our strategy for computing these loop-level corrections is by “gluing” 

together tree-level correlators  [Chen, Gemenez-Grau, Paul, XZ]. This generalizes the AdS 
unitarity method in defect free CFTs [Aharony, Alday, Bissi, Perlmutter '16]

1/N

+ + + + + …

× tree tree×

•  The meaning of gluing can be made precise in terms of the leading logarithmic singularities at 
small cross ratios . We will then complete the singularities into the correlator. We 
focus on the reduced correlator  and the lowest .

B, D → 0
ℋ ⟨22⟩

tree



One-loop bootstrap

• We first consider a toy version where we have only  and there is no operator mixing. This 
amounts to consistently truncating the bulk SUGRA so that there is no internal .

S2

S4

The toy version: no mixing

Disconnected

=
∞

∑
n=0

∑
ℓ even

λ(0)
n,ℓ a(0)

n,ℓ gb
τn,ℓ

On,ℓ =: □n S2∂ℓS2 :
Bulk double-trace operators

=
∞

∑
n=0

∑
s

b(0)
n,s b(0)

n,s ̂gd
̂τn,s

Defect “double-trace” operators

̂O n,s = □n
⊥ ∂s

⊥S2 |xi=0

Free propagator

∼ 1 ∼ 1/N

s
Dimension:
Transverse spin:

4 + 2n + s Dimension: 8 + 2n + ℓ
Spin: ℓ

⟨ ̂O n,sS2⟩ ∼ b(0)
n,s

⟨S2S2On,ℓ⟩ ∼ λ(0)
n,ℓ

⟨On,ℓ⟩ ∼ a(0)
n,ℓ



One-loop bootstrap
• Logs come from anomalous dimensions

tree =

Tree level

∞

∑
n=0

∑
ℓ even

λ(0)
n,ℓ a(1)

n,ℓ gb
τn,ℓ (bulk channel)

∞

∑
n=0

∑
s

b(0)
n,s ̂γ(1)

n,s b(0)
n,s ̂gd

̂τn,s
(defect channel)  coefficientlog D

̂gd
̂τ,s ∼ D ̂τ(1 + …) ⊃ ̂γ log D ̂gd

̂τ,s

∼ 1/N2

̂γ(1)
n,s ∼ 1/N2

Only , no log D log B

gb
τ,ℓ ∼ B

τ
2(1 + …) ⊃ γ

2 log B gb
τ,ℓ

γ(1)
n,ℓ ∼ 1/N3

̂τ = Δ̂ − s

τ = Δ − ℓ
B = (1 − z)(1 − z̄)

z + z̄ D =
zz̄

z + z̄

The anomalous dimension are of order



One-loop bootstrap
• At one-loop the leading logarithmic singularities are  and . Their coefficients 

depend only on the tree-level data
log2 D log B

Bulk channel:

1-loop =
∞

∑
n=0

∑
ℓ even

1
2 λ(0)

n,ℓ γ(1)
n,ℓ a(0)

n,ℓ gb
τn,ℓ

 coefficientlog B

∞

∑
n=0

∑
ℓ even

(
1
2 λ(0)

n,ℓ γ(1)
n,ℓλ(0)

n,ℓ ) (λ(0)
n,ℓa(0)

n,ℓ)

(λ(0)
n,ℓ)2

gb
τn,ℓ=

tree

Defect channel:

1-loop =
∞

∑
n=0

∑
s

1
2 b(0)

n,s ( ̂γ(1)
n,s)2 b(0)

n,s ̂gd
̂τn,s

=
∞

∑
n=0

∑
s

(b(0)
n,s ̂γ(1)

n,s)2

2(b(0)
n,s )2

̂gd
̂τn,s

( )
2

 coefficientlog2 D

tree



One-loop bootstrap

• In our theory there are degeneracies among operators
The full theory: operator mixing

Bulk channel: : □n S2∂ℓS2 : : □n−2 S3∂ℓS3 : : S n
2 +2∂

ℓS n
2 +2 :… τ = 8 + 2n

Defect channel: □n
⊥ ∂s

⊥S2 □n−1
⊥ ∂s

⊥S3 …
∂s

⊥Sn+2 ̂τ = 4 + 2n

• Therefore, all the coefficients in the conformal block decomposition are averages

⟨b(0)
n,s ( ̂γ(1)

n,s)2 b(0)
n,s ⟩ ≠ ⟨(b(0)

n,s )2 ̂γ(1)
n,s⟩2/⟨b(0)

n,s ⟩2

• In principle, we need to first unmix and get the eigenvalues. This is possible but not necessary. 
To compute  at one loop, there is a shortcut. ⟨22⟩

×treesum over p
2 2

p p

p p

tree tree×
2 p 2p



One-loop bootstrap
• Bulk channel

Λ(0) =[ ]
λ22O1

λ22O2
… λ22OM−1

λ33O1
λ33O2

… λ33OM−1……… …
λMM,O1

λMMO2
… λMMOM−1

M = n
2 +2operator degeneracy 

different 
correlators

Disconnected 4pt:

Λ(0)(Λ(0))T = N(0) =[ ]⟨2222⟩(0)

⟨3333⟩(0)

⟨MMMM⟩(0)
…

A(0) = (a(0)
1 , a(0)

2 , …, a(0)
M−1)

T

Disconnected 2pt:

Λ(0)A(0) = [ ]⟨22⟩(0) ⟨33⟩(0) … ⟨MM⟩(0)
T

Γ(1) = diag(γ(1)
1 , γ(1)

2 , …, γ(1)
M−1)

Tree level:

Λ(0)Γ(1)(Λ(0))T = Ω(1) =[ ]⟨2222⟩(1) …
…
………

…

…

⟨3322⟩(1)

⟨MM22⟩(1)

⟨2233⟩(1) ⟨22MM⟩(1)

⟨MMMM⟩(1)

…
…

…

Organize the CFT data into matrices



One-loop bootstrap
1-loop :log B

Λ(0)Γ(1)A(0) = Λ(0)Γ(1)(Λ(0))T(N(0))−1Λ(0)A(0)

= Ω(1)(N(0))−1(Λ(0)A(0))

All tree-level 4pt functions are known [Alday, XZ ’20]. The data ,  were extracted in 
[Alday, Chester, Raj ’20]. We need only the 1st component of the vector. Therefore, we only need 
the tree-level  and the disconnected .

Ω(1) N(0)

⟨22pp⟩(1) ⟨pp⟩(0)

[ ]
⟨2222⟩(1) …

…
……… …
…

⟨3322⟩(1)

⟨MM22⟩(1)

⟨2233⟩(1) ⟨22MM⟩(1)

⟨MMMM⟩(1)

… …

…

×tree

2 2

p p

p p

[ ]⟨22⟩(0) ⟨33⟩(0) … ⟨MM⟩(0)
T

Λ(0)A(0) =Ω(1) =



One-loop bootstrap
• Defect channel

B̂(0) = [ ]
b2Ô1

…
b3Ô1

…
……

bL,Ô1
…

L = n + 2
operator degeneracy 

different 
correlators

b2Ô2
b3Ô2

bL,Ô2

…

b2ÔL−1
b3ÔL−1…
bL,ÔL−1

B̂(0)(B̂(0))T = N̂(0) =[ ]⟨22⟩(0)

⟨33⟩(0)

⟨LL⟩(0)
…

Γ̂(1) = diag( ̂γ(1)
1 , ̂γ(1)

2 , …, ̂γ(1)
M−1)

Tree :log D

B̂(0)Γ̂(1)(B̂(0))T = Ω̂(1) =

Free 2pt:

1-loop :log2 D

B̂(0)(Γ̂(1))2(B̂(0))T

= Ω̂(1)(N̂(0))−1Ω̂(1)[ ]
⟨22⟩(1) …

…
……… …
…

⟨32⟩(1)

⟨M2⟩(1)

⟨23⟩(1) ⟨2M⟩(1)

⟨MM⟩(1)

… …

…

= B̂(0)Γ̂(1)( ̂B(0))T(N̂(0))−1B̂(0)Γ̂(1)(B̂(0))T

We need only the 11 component.

tree tree×
2 p 2p



One-loop bootstrap
• To summarize, expanded in small  and , we can compute all the leading logarithmic 

singularities using the tree-level data via gluing 
B D

+log D F0,1(B, D) +F0,0(B, D)+log2 D F0,2(B, D)

ℋ(B, D) = log B log2 D F1,2(B, D) + log B log D F1,1(B, D) + log B F1,0

bulk channel

defect channel

• We need to complete the leading logs into the full correlator. To do this, we use Mellin space

ℋ = ∫
dδ dγ
(2πi)2

B−δDγ ℳ̃ (δ, γ) Γ̃ 22(δ, γ) Γ̃ 22 = Γ(δ)Γ(γ − δ)Γ2( 6 − γ
2 )

• Singularities determines pole structures:

-  : the integrand has double poles at  and triple poles at log B log2 D δ = − n γ = 6 + 2m

-  also have poles:  has simple poles.Γ̃ 22 ℳ̃ (δ, γ)



One-loop bootstrap
• We make the assumption that the reduced Mellin amplitude has only simultaneous poles

ℳ̃ (δ, γ) =
∞

∑
m,n=0

cmn

(δ + n)(γ − 6 − 2m)

where the numerators  are numbers.cmn

• Solving ansatz: we take residues and focus on the  term. By matching with the 
known  in the small ,  expansion, we can extract the .

log B log2 D
F1,2(B, D) B D cmn

• For example, in the defect channel we can compute  for fixed cmn m

c0n =
9(n4 + 10n3 + 35n2 + 50n + 48)

4(n + 1)(n + 2)(n + 3)(n + 4)(n + 5) c1n =
9(5n6 + 81n5 + 517n4 + 1655n3 + 2814n2 − 464n + 1536)

4(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)(n + 7)

c2n =
3(37n8 + 900n7 + 9394n6 + 54912n5 + 196477n4 + 422700n3 + 959916n2 − 524592n + 279936)

4(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)(n + 7)(n + 8)(n + 9)



One-loop bootstrap
• Checking ansatz: inserting the coefficient, we can take the  coefficient but keeping the 

full  dependence.  We find the term without  is also correctly reproduced
log2 D

B log B

+log D F0,1(B, D) +F0,0(B, D)+log2 D F0,2(B, D)

ℋ(B, D) = log B log2 D F1,2(B, D) + log B log D F1,1(B, D) + log B F1,0

• This implies that there are no single poles in !γ
• Similarly, in the bulk channel we find 

cm,0 =
9 π(5m(7m + 25) + 96)Γ(m + 1)

512Γ(m + 7
2 )

cm,1 =
9 π(5m(7m + 25) + 96)Γ(m + 1)

1024Γ(m + 7
2 )

cm,2 =
9 π(m(m(329m + 1865) + 2830) + 1024)Γ(m + 1)

4096Γ(m + 9
2 )

• Also we can check there are no single poles in .δ

cm,3 =
9 π(m(m(847m + 4605) + 6356) + 1728)Γ(m + 1)

8192Γ(m + 9
2 )

input 
check



One-loop bootstrap
• The one-loop Mellin amplitude is fixed up to regular terms. Such regular terms correspond to 

contact Witten diagrams and are expected as UV counter terms.

• Carry out this calculation to high orders and we can find the general form for cmn

Ha =

cmn = pmH0 + qm,nH1 + rm,nH2 + smH4

pm = 3(m + 1)2(m + 2)2

first one-loop defect 
2pt function

qm,n = 7m2n2 + 28m3n − 21m2n + 64m4 + 134m3 + 158m2 − 14mn2 + 6mn + 250m + 19n2 + 95n + 162

rm,n = − 7m2n2 − 28m3n + 35m2n − 102m4 − 82m3 − 158m2 + 14mn2 − 34mn − 230m − 19n2 − 57n − 100

sm = 35(m − 1)2m2

π4mΓ(m + n + 3)

Γ(
−2m − 3

2 )Γ(2m + n + 6)
3F2[ ]−m − 2 , −2m − n − 5

2 , −2m − n − 4
2

−2m − 3
2 , −m − n − 2

1
m → m − 2



Outlook
• Many things are defects (Wilson loops, giant gravitons, real projective space…)

• Flat space limit

• Higher-point correlators.

- A precise prescription for taking the flat-space limit of AdS amplitudes is not yet available for 
defect systems.

- Useful for studying stringy corrections. Also connects to integrated correlators from 
localization;

• Complementary position space techniques at loop levels

- The bootstrap techniques give powerful tools to study these systems.

- In the defect free case, position space methods are useful for going to higher loops

- What is the space of functions?



Thank you!


