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Motivations

 Defects are extended objects which lead to enrichment of theories.

* A wide range of applications both experimental (impurities, domain walls, boundary effects...)
and formal (Wilson loops, D-branes, symmetry generators...).

* Also interesting objects to study in the conformal bootstrap program

- The insertion of (planar) defects breaks part of conformal symmetry.

- Still shares a lot in common with CFTs without defects (OPE, conformal blocks). Described by
an enlarged set of CFT data.
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Motivations

- Simpler kinematics: an ideal testing ground for developing new bootstrap techniques. The
simplest kinematically nontrivial case is 2pt function of bulk operators.

- On the other hand, many existing tools (Lorentzian inversion formula, dispersion relation)
generalize easily to the defect case, giving us good control of the CFT data.
* By contrast, we know much less about correlators

- Given a theory it is also important to know how to compute the correlators (equivalent to
knowing infinitely many CFT data).

- So far most progress is in the weakly coupled regime where standard techniques such as
Feynman diagrams, € expansion, large N expansion apply.

- In the strongly coupled regime where AdS/CFT is a useful description, almost nothing is
known about holographic correlators in the presence of a defect.



Motivations

* This should be contrasted with the significant recent progress in the case without defects

(higher-point, higher loops, stringy corrections...).

* New observables
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On-shell scattering
amplitudes

Form factors with
extended objects

* |n this talk | will report bootstrap methods for computing holographic defect correlators,
both at tree and loop levels. As a concrete example, | will focus on 6d (2,0) theory with

half-BPS surface defects.



Surface defect in 6d (2,0) theory

« The defect system can be realized using /V coincident M5 branes and a probe M2 brane. The
dual geometry is

AdS; C AdS, x §*

and we consider the large NV limit.

. Inthe AdS, X S* bulk: we have 11d SUGRA (dual to 6d (2,0) theory).

d.o.f.: KK modes of 11d SUGRA — 1/2-BPS multiplets labelled by k = 2,3,....

Scf primaries S, (super gravitons): A = 2k, in rank-k symmetric traceless rep. of SO(5)p.

» In AdS;: this is the world-volume of M2 brane (dual to the surface defect).

There are localized d.o.f. which can couple to the bulk.



Surface defect in 6d (2,0) theory

* Large central charge expansion
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Superconformal kinematics

* We introduce R-symmetry polarizations to get rid of the indices of the super gravitons
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* The defect breaks half of the supersymmetry
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Superconformal kinematics

* The 2pt function can be written as a function of 3 cross ratios
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Fermionic generators imposes superconformal Ward identities |

F(,,w=2)=0k) F(,Z,w=272) ={Z)

This also follows from chiral algebra |



Superconformal kinematics

* We can easily solve these constraints as
F (2,2, 0) = F (2,2, ) + R (2,7, w)
Here
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F () + (< 2Z) (from the meromorphic chiral correlator)

All dynamical and unprotected information is contained in the reduced correlator Z .



Tree-level bootstrap

* [ree level: In principle can be computed by summing up all the Witten diagrams.

 However, this requires to work out the complicated vertices and does not take advantage of
the unbroken symmetries.

* A better strategy is bootstrap, similar to the defect free case | ]. It turns out that
tree-level 2pt functions are fixed by using only symmetries and consistency conditions |
]. I will present a position space version which can be done in 3 steps.

* The starting point is to write down an ansatz

<Sk1Sk2V>tree= Z HB @ + Ha . + K. @

 Determined by selection rules: R-symmetry, vanishing of extremal couplings. Note fields
exchanged in the defect channel has no KK modes. Moreover, we require no derivatives in the

contact vertices.



Tree-level bootstrap

* The next step Iis to evaluate the ansatz

- It can be shown all bulk and defect exchange Witten diagrams can be written as a finite
sum of contact Witten diagrams (a generalization of |

D=0 Q:Q

- The contact Witten diagram can be evaluated in a closed form as a 2F1 function
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Tree-level bootstrap

* Finally, we impose the scf Ward identity
0.7 (2,%,2) =0
 Remarkably, this fixes all the unknown parameters up to an overall factor!

* But this overall factor cannot be arbitrary because the unknown parameters have the
interpretations as OPE data. The same data can appear in multiple correlators

<Sk1Sk2V>tree= Z HB @ + Ha . + K. @
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» Considering all (k,k,) together allows us to reduce overall factors to that of k; = k, = 2,
which can be fixed in terms of central charge.



Tree-level bootstrap

* The final answer takes the following form in position space

F = ) hinti P+ bobo P + ¢ (1 = 20)Cy o,
k

P, sum of bulk exchange Witten diagrams of multiplet k + contact to improve Regge

N

9P sum of defect exchange Witten diagrams

* Note this makes the form of the contact part particularly simple.
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Intermezzo: Mellin space

* o better understand the analytic structure, we go to Mellin space. The standard Mellin
formalism introduced by Mack and Penedones can be extended to include defects and
boundaries | . The Mellin amplitudes can be viewed as
form factors with extended objects.
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* Witten diagrams are simple in Mellin space 2 0 =P P>
- Contact diagrams are just constants. | J“x‘\ y = — p12” = — p22”
- Exchange diagrams have poles. NP2

* Translating diagram by diagram: the Mellin amplitude is a rational function.



Intermezzo: Mellin space

* An even simpler expression is given by the Mellin transform of the reduced correlator

do d — — 2k, + 2
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 The reduced Mellin amplitude is related to the Mellin amplitude by a difference operator

M(0,7) = R o M Each monomial B™D" can be
absorbed by a shift and becomes a
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 The reduced Mellin amplitude is a finite sum of simultaneous poles
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One-loop bootstrap

At the next order in 1/N, our strategy for computing these loop-level corrections is by “gluing”

together tree-level correlators | ]. This generalizes the AdS
unitarity method in defect free CFTs | ]
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 The meaning of gluing can be made precise in terms of the leading logarithmic singularities at

small cross ratios B, D — 0. We will then complete the singularities into the correlator. We

focus on the reduced correlator # and the lowest (22 ).



One-loop bootstrap
The toy version: no mixing

 We first consider a toy version where we have only $, and there is no operator mixing. This

amounts to consistently truncating the bulk SUGRA so that there is no internal S,

Free propagator Disconnected
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One-loop bootstrap

* Logs come from anomalous dimensions
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One-loop bootstrap

* At one-loop the leading logarithmic singularities are 1()g2 D and log B. Their coefficients
depend only on the tree-level data
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One-loop bootstrap
The full theory: operator mixing

* |In our theory there are degeneracies among operators

4 .
Bulk channel: 078,078, 0 [O"28,0°S, S%H@ Sgﬂ r=8+2n
Defect channel: 1S, =153 8, 015042 t=4+2n

* Therefore, all the coefficients in the conformal block decomposition are averages
0 1 0 0 1)\2 0)\2
(bid (1) bl # (B0 730 (BiY)

* In principle, we need to first unmix and get the eigenvalues. This is possible but not necessary.
To compute (22) at one loop, there is a shortcut.
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One-loop bootstrap

e Bulk channel

Organize the CFT data into matrices |
Disconnected 4pt:

Ano,  Ano, -+ Ao, (2222)
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A0 — (a(O) (0) qV )T dg Vi oy oeee
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One-loop bootstrap

1-loop log B:
OO M AO) — A O A ONTNO)—1 A (0) A (0)
AOTMAO) = AOLMAONT(NOY-TAOA (iree)x\ /
= QINOH-I P
All tree-level 4pt functions are known | ]. The data Q(l), N© were extracted in
| ]. We need only the 1st component of the vector. Therefore, we only need

the tree-level (22pp)!) and the disconnected (pp ).

______________ » _____________-_\T
Q(l) _ <3322>(1) — |‘<22>(O) <33>(O) <MM>(O) I]



One-loop bootstrap o) X ([ treo

e Defect channel

byo, D20, -+ by, o Free 2pt:
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We need only the 11 component.



One-loop bootstrap

e To summarize, expanded in small B and D, we can compute all the leading logarithmic
singularities using the tree-level data via gluing

bulk channel
(B, D) =|llog Blog> D F, 5(B, D)+ log Blog D F, ((B,D) + log B F ,

defect channel

+log® D F,,(B, D)

* We need to complete the leading logs into the full correlator. To do this, we use Mellin space

+log D F (B, D) +Fy (B, D)

46 d —  ~ = i
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e Singularities determines pole structures:

- log Blog” D : the integrand has double poles at § = — n and triple poles at y = 6 + 2m

- ?22 also have poles: %(5, ¥) has simple poles.



One-loop bootstrap

* We make the assumption that the reduced Mellin amplitude has only simultaneous poles

2 C Crmn
2N = méo 5+ n)(y — 6 — 2m)

where the numerators ¢, are numbers.

- Solving ansatz: we take residues and focus on the log B log” D term. By matching with the

known F ,(B, D) in the small B, D expansion, we can extract the c,,,,.

» For example, in the defect channel we can compute ¢, , for fixed m

9(n* + 10n°> + 35n* + 50n + 48) 9(5n° + 81n” + 517n* + 1655n° + 2814n* — 464n + 1536)

“0n = Jn+ Din+ D0 +3)n+ B+ 5) “ln = 4n+ D +2)n+3)n+4)(n+5)n+6)n+7)

3(37n® +900n" + 9394n° + 54912n° + 196477n* + 422700n° + 9599161 — 524592n + 279936)
C2n = dn+ 1D +2)n+3)n+4)n+5n+6)(n+T7)(n+8)(n+9)




One-loop bootstrap

e Checking ansatz: inserting the coefficient, we can take the 1()g2 D coefficient but keeping the

full B dependence. We find the term without log B is also correctly reproduced

* This implies that there are no single poles in y!

* Similarly, in the bulk channel we find

N w(5Sm(Tm + 25) + 96)[((m + 1) W a(Gm(Tm +25) +96)1'(m + 1)
Cn0 = CmJ o
| 5120 (m+3) 10241 (m +3 )
N/ (m(m(329m + 1865) + 2830) + 1024)['(m + 1) N/ (m(m(847m + 4605) + 6356) + 1728)'(m + 1)
C — C —
m,2 m,3

4096r<m+§> 8192r<m+%)

« Also we can check there are no single poles in 0.



One-loop bootstrap

* The one-loop Mellin amplitude is fixed up to regular terms. Such regular terms correspond to
contact Witten diagrams and are expected as UV counter terms.

» Carry out this calculation to high orders and we can find the general form for ¢, ,

Coun = Py + Gty + 1y 1 + 5,H, first one-loop defect

2pt function
p,, = 3(m + 1)?(m + 2)?

Gy = TM*n* + 28m>n — 21m*n + 64m* + 134m> + 158m* — 14mn* + 6mn + 250m + 19n* + 95n + 162

ro = —"Tm*n?—=28mn + 35m?n — 102m* — 82m> — 158m? + 14mn? — 34mn — 230m — 19n% — 57n — 100

m,n

s, = 35(m — 1)*m?*

\/7_z4mF(m+n+3) —m—=2, —2m—n-—1>5 —2m—n—4

) 2
H = " _7,,-3 317 ’ 1

a I'( > N'(2m + n + 6) —2n;—3, —m—-n-=2 "= — 2




Outlook

 Many things are defects (Wilson loops, giant gravitons, real projective space...)

- The bootstrap techniques give powerful tools to study these systems.

* Flat space limit

- A precise prescription for taking the flat-space limit of AdS amplitudes is not yet available for
defect systems.

- Useful for studying stringy corrections. Also connects to integrated correlators from
localization;

« Complementary position space technigues at loop levels

- In the defect free case, position space methods are useful for going to higher loops

- What is the space of functions?

* Higher-point correlators.



Thank you!



