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KK Relations

There are many relations for color-ordered YM amplitudes. The
Kleiss-Kuijf relations

AN n {8Y) = ()P YT AL 0n),

ocawpT

reduce the number of independent color-ordered YM amplitudes into
(n—2)\.
[Kleiss, Kuijf; 1989] [Del Duca, Dixon, Maltoni; 2000]
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BCJ Relations

In 2008, Bern, Carrasco and Johansson find new relations,

AZM(17ﬂ1a"' 7B’ra25a1a"' 7an—r—3an) =

> Clapma AN (1,2,{¢}n),
(e)ye{Byup{a)

which reduces the independent number to (n — 3)!.
The set of color-ordered YM amplitudes {AYM(1,2,{¢},n),€ € S,—3}
is the minimal basis, called the BCJ basis.

[Bern, Carrasco, Johansson, 2008]
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KLT Relations

KLT (Kawai, Lewellen and Tye) relations initially say that closed
string amplitudes can be written as the sums of products of open
string amplitudes,

li)M737r/€M72 Z A G(M) i F (PP

A2 = (!
PP’

[Kawai, Lewellen and Tye; 1986]
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KLT Relations

Taking filed theory limit o/ — 0, we get the field theory version of the
KLT relations as

n

AS = Y AMn—1,n,0,1)S[ol6]AM(1,6,n — 1,n),

o, 6ESp_3

where S[o|d] is the momentum kernel.
[Bjerrum-Bohr, Damgaard, Feng, Sondergaard; 2010]
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CHY formalism

Through the scattering equations, Cachazo, He, and Yuan (CHY) give
the tree-level amplitude of a specific theory as an integral over the
n-punctured sphere

Ay (k€ €) :/d,un Zn(k,e € 0).

® Here the measure part is universal, same for different theories

d"o ’ kq - kp
dppn, = ————— 1) —),
" volSL(2,C) Ha (; Tab )

the integrations are localized by n — 3 linearly independent delta
functions completely.

[Cachazo, He, and Yuan; 2013, 2014]
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The integrand depends on the specific theory, for example
PT, (a)Pf'V,, PfU,(e)Pf'V, (), PT,(a)Pf¥, _.(e)Pf'V, (¢)

for YM, gravity, and single trace EYM.

® The Parke-Taylor factor PT,,(«) is defined by
1

PTy(a) =

Tajaz0azag " " Oapay

® The reduced Pfaffian Pf'U,, is

/ o (_1)i+j ij
Pf'w,, =2 Pf(‘lli.).
0ij J



Background
0000000@00000000

Relations of Amplitudes

The 2n x 2n anti-symmetric matrix is

A —cT
(e 5 )

where
kq-kp €4 €p
katky g e gy
A = Tab ’ B = Tab ’
ab { 0 a=2», ab { 0 a=1b,
and
€q-kp
carky a#b,
Cab = Tab €q-ke —p
- Zc:l,c;ﬁa Oac a=70.
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Generalized KLLT Relations

Integrand Z,, can factorize into two factors, Z = Z;, x Zr. Each factor
multiplied by a PT factor can be viewed as an integrand of a new
theory.

To(kye,&,0) =T (k,e,0) x T (k& )
la,nln/ \1 Byn,n —1)
T(1,a,n—1,n) x I"(a) T(1, 8,n,n—1) x I (a

After localize the integrations, we get the generalized KLT relations:

ZA<L )S[a]B1ALD (8).

[Cachazo, He, and Yuan; 2013, 2014]
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® For example, consider the integrand of single trace EYM
amplitude
TEYM —PT, (a)Pf¥,,_(€)PTn(1,5,n — 1,n)
1

X —————— x Pf'U, (§)PT -1 1
PTn(&)PTn(o) n(€) n(n , N, O, )7

after localize the integrations,

ADM ()= > AMn—1,n,0,1)S[0|6]AYNE (0]1,5,n — 1,n).

rn—r
o,6ESp_3

® The KLT relation gives the expansion of EYM amplitude in BCJ
basis of YM amplitudes, after summing &,

AEYM ZC AYM (n—1,n,0,1).

T’I’LT
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Web of different theories (1)

Cachazo, He, and Yuan introduced three operations on the
integrands,

® dimensional reduction,
® generalized dimensional reduction,

® squeezing.

From the integrand of Einstein gravity, they got the integrands of
many other different theories.
[Cachazo, He, and Yuan; 1412.3479]
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Web of different theories (1)

|
|
| v
' compactify actify
i
3 “compactify”
squeeze | EM DBI
I
b
i 3 generalize
' — ¢
i . . e
| single trace “compactify”
---+  EYM YM T NLSM
I
|
compactify,
1
I
|
¢t YMS | squeeze
corollary !
|
E generalize i
JEN E— |
generalized | _‘1
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[Cachazo, He, and Yuan; 1412.3479]
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Differential Operators

® Cheung, Shen and Wen simply view the physical scattering
amplitude A as a function of k; - k;, k; - €5, €; - € for i # j on the
support of on-shell conditions.

® Physical differential operators should preserve some constraints,
i.e., commuting with total momentum operator P, = Z?Zl ki-v
and gauge invariance operator G; = > (ps - v)9(c,.v)-

® They introduced three kinds of differential operators to transmute
the amplitude of one theory into that of another theory.

[Cheung, Shen, Wen; 2017]
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These differential operators are
® Trace operators, T;; = O, .,, reduce the spin of particles 4, j by
one, and put them in a new color order.

® Insertion operators, Tij; = O, .k, — Oe,.k,, reduce the spin of
particle j by one, and insert it between particles ¢, in a color
order.

* Longitudinal operators, £; = 3;(k; - kj)Oe, .k;, reduce the spin of
particle ¢ by one and convert it to a longitudinal mode.

[Cheung, Shen, Wen; 2017]
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® The trace operators are intrinsically gauge invariant, but
insertion operators are effectively gauge invariant,

(Tij,Gi] =0, [Tij, Gi] = 0uTij — oraTjk-

It just means we can’t apply insertion operators before trace
operator.

® For example,

T[il"'in]AG(hiN"' 7hin’...) :AEYM(II:17”' ’in;...),

Where T[Zl e Zn] = (HZ:_QI 7;871is7;7L> 7;;11.77,'
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Web of different theories (2)

[Cheung, Shen, Wen; 1715.03025]
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® In 2016, Stieberger and Taylor give the simple formula about the
expansion of single trace EYM amplitude with one graviton

n—1
K
APM(L, s = 7 S en - KA (A, i i+ 1, ),
i=1

with K, = k1 +--- + k;.
[Stieberger, Taylor; 2016]

® The result of Stieberger and Taylor is quickly generalized to the
more general situations with gravitons, even double traces in
CHY formalism or double-copy. [Nandan, Plefka, Schlotterer and
Wen; 2016] [de la Cruz, Kniss, Weinzierl;2016] [Chiodaroli, Gunaydin,
Johansson, Roiban; 2017]
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® From a general ansatz, Fu, Du, Huang and Feng give a compact
recursive formula for the expansion of EYM amplitudes with m
gravitons

AN =Y Y G,

W h|h=H\hg

EYM =
An+m7|m7“~1‘(l,{2,. ..,m—1}w{h,h.},n;h),

in KK basis with the help of gauge invariance. [Fu, Du, Huang,
Feng; 2017]

® Quickly, Teng, Feng prove the formula in the CHY formalism.
[Teng, Feng; 2017]

® Du, Feng, Teng generalize the expansion of single trace EYM

amplitude to all multitirace tree level EYM amplitudes. [Du,
Feng, Teng; 2017]
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As we all known, the BCJ basis is the minimal basis, rather than KK
basis. A nature question arises: what is the expansion of single
trace EYM amplitude in the BCJ basis?
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Gauge invariance is important!

The gauge invariance plays an important role in the expansion of
EYM amplitude.

AT (L. n;ha, ha, by, ha) (3.41)

=3 (em - Ya AR (1,42, . n = 1} W {1}, o, Ry, ha)
m

30 S (e Fh V)AL, {2,y m = 1} W {hi ha},mi {ha, ha, ha} /(i)

i=234 W

D0 D e Fay oy Yo, JAT (L A2, on — 1} W {on on,, B}, m; Lo, ha, ha}/ {hi, hy))

2054 W
i

30 D (e Foy  Foyy P Yoo, JATY(1,42, o m = 1} {0y, Oy 0y, B} )

oes; W

Here F!" = €l'k? — k!'e! is the linearized field strength, which is
manifestly gauge invariant.

So we need to consider the principle of gauge invariance more.
[Chih-Hao Fu, Yi-Jian Du, Rijun Huang and Bo Feng, 1702.08158]
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First Principles

From first principles, sometimes we can determine the tree-level
amplitudes uniquely.

Locality

The amplitude has only simple poles when the sum of a subset of
momenta Ks = ¢ k; goes on shell.

| \

Unitarity

The amplitude factorizes on the poles into the product of lower-point
amplitudes, with an extra intermediate line.

Gauge Invariance

The amplitude satisfy the Ward identity A(e; — k;) = kl'A, = 0.

[Arkani-Hamed, Rodina, Trnka; 2016]
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Gauge Invariance v.s. Locality and Unitarity

® Feynman diagrams make locality and unitarity manifest, but not
gauge invariance. Only the sum of all Feynman diagrams is gauge
imwvariant. For example,

Ap~ (e~k)s(e~e)+(e~k)t(e~e)

+ (e-€)(e-e).

® If we make the sum be gauge invariant manifestly, the locality
and unitarity become obscure.

Ay~ —.
4 st
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Determinacy of Gauge Invariance

Arkani-Hamed, Rodina and Trnka make a general ansatz compatible
with locality, i.e., the singularity structure of cubic graphs:

A=Y N} (€3, pisp™~?)

n = =
T P<721P32“'P02n73

In the limit of one momentum being soft, they can prove the A, = A,

by requiring the gauge invariance inductively.

[Arkani-Hamed, Rodina, Trnka; 2016] [Rodina; 2016]
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Arkani-Hamed, Rodina and Trnka even make a further conjecture:

Determinacy of Gauge Invariance

Simply specifying that singularities only occur when the sum of a
subset of momenta goes on shell P? — 0, gauge invariance uniquely
fixes the amplitude, together with the usual mass dimension counting.

[Arkani-Hamed, Rodina, Trnka; 2016] [Rodina; 2016]
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We want to know the consequences of gauge invariance only, not
require the appearance of singularities, then try to solve the
constraints of gauge invariance solely.
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Physical constraints of amplitudes

Consider the color-ordered YM amplitude, a d-dimensional, parity
even n-point gluon amplitude satisfies:

® on-shell conditions: kf =0fori=1,---,n,

® momentum conservation: » ., ki =0,

 multilinearity, A = €1, €, * * * €np0, [1H27F0,

® transversality: k; - ¢, =0, fori=1,--- n.
The most important

® gauge invariance: A(e; — k;) =0, fori=1,--- ,n.
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Solving Gauge Invariance

® The constraints of first four conditions are easily solved, only
n(n — 3)/2 independent (k; - k;), n(n —2) (k; - €;) and n(n — 2)
(€i - €5) (i j) involved.

® Then constructing all monomials of (k; - €;) and (e - €;) satisfying
the condition of mulitilinearity, which is a linearly independent
basis, then a ”possible” amplitude is a linear combination of
these bases.

® Imposing the conditions of gauge invariance results in n linear
equations, transform them into the independent bases, then solve
the system of linear equations.

[Barreiro, Medina; 2013] [Boels, Medina; 2016]
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Solving Gauge Invariance (2)

TABLE 1. Solving on-shell constraints: gluons.

Minimal Number of

Number of number of Number of terms on-shell
gluons metrics in ansatz gauge invariant
4 1 27 1

0 43 10
5 1 315 2

0 558 142
6 1 4575 6

0 8671 2364
7 1 79 275 24

0 157 400 45028
8 1 1 593 753 120

The two lines in Minimal number of metrics correspond to linear
combinations with leading terms as (e - €)(e- k)" =2 or (e- k)"
[Boels, Medina; 1607.08246]
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The idea of solving gauge invariance is simple, but very powerful.

Further, there is also a conjecture:

Determinacy of Gauge Invariance

A general function of » momenta and n polarizaiton vectors satisfying
the gauge invariance, with leading term (e - €)(e - k)" 2, must be the
linear combination of the BCJ basis of YM amplitudes!

[Rodina, 1612.06342]

But the method of solving linear equations directly is not efficient and
limited to the first several examples.
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Viewing EYM Amplitudes as Polynomials

For an EYM amplitude AE?{,ZM(L 2,--+,n;{h1, -+, hm}), it contains

{5, ki Ky -+ Ky}, and polarization vectors and tensors
it v v
{elﬂ"' aegaehla"' 7€hm}

* Polarization tensors of gravitons factorize €},” = ¢}, € , and
further €p,, - €5, doesn’t exist.

® There are two sets of Lorentz contractions, {(k - €,), (¢ - €5)} and
{(k-€), (- €n)}, we view the amplitude AFYM as a polynomial
of the first set contractions with coefficients of the latter.

® The polynomial AE\,{nM is gauge invariant for €, and €,
separately.
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Assuming the expansion ARYM = 37 Co (k, e, ) AYY, (1,2, {a},n).
Since the amplitudes in the BCJ basis are linearly independent, if
we require the gauge invariance of €5, in A, pn,

n+m

> Calen, = kn) AN, ({a}) =0 = Cal(en, — kn,) =0,

then all expansion coefficients are gauge invariant for
(6h17 T ’Ehm)'

Since the gauge invariance has strong constraints on the form of
functions, then we want to solve the gauge invariance of C, as a
function of (K1, - ,knyknys v Ehy, s €hys 5 €Ry,)-
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Basic Mathematical Settings

A most general polynomial b of n momenta and m polarization
vectors ((m < n ) satisfying previous physical constraints is
schematically described as

Dnm (ks kny €1, €m) = g€ - )™+
ar(e-e)(e- k)24 4 ajm (e E)L%J (e k)Tn—QL%J
with
® B[V]:={(e-e)l(e-k)™ 2, 0<j<[%]} as generating set,

® «;’s being rational functions of k; - k;,
® g 7é 0.
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All such polynomials b, ,,, constitute the vector space Vy, .

And there are many such vector spaces for different n and m.
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To avoid solving linear equations imposed by gauge invariance, we
view the replacement ¢; — k; as a map among the vector spaces
Vn,m's, called gauge invariant map.

A gauge invariant map is given by the gauge invariant operator
Gi =, (v-k;)Oy.c,, v representing all Lorentz vectors.

The kernel and image of the gauge invariant map G; : V,, s — V,(f,)s_l
are important,

® Ker Gi[Vn.s] = {f € Vns|f(e; = ki) =0},

e the map is surjective, so Im G;[V,, 5] = V,(i)s_l.
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A physical polynomial we are interested in is gauge invariant for all
its polynomial vectors.

Gauge Invariant Vector Space

All polynomials gauge invariant for all its polynomial vectors
constitute a vector space, called gauge invariant vector space, given by

Wam = ﬁ Ker G;[Vim]-

i=1
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To characterize the gauge invariant space W, ,,, we should known
® its dimension,
® the manifestly gauge invariant form of its vectors,

® the basis.
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o)
?



Gauge Invariant Vector Space
000000000000 00000000000

Case: m =1

For the case with m =1, G : V,,.1 — V,, 0, the dimension of W), 1

dimW,, 1 =dimKer G; =dimV,, ; —dimIm G,
=dim V, 1 —dim V, o,

the dimensions of dimV, ; =n —2,dimV, o = 1.

The fundamental theorem of linear map is

dimKer G; = dimV, , — dimIm G; = dimV,_, — dim V")

n,s—1°
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Case: m =2

Vil
V \\QQ
e 12
Vn,2 V,'g’o)
g2\\\‘u %
v

The dimension

dim W, » =dim(KerG; N KerGs)
=dim KerG; + dim KerG, — dim(KerG; + KerGs)
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Case: m =2

Proposition I: the splitting formula

Ker G1 + Ker Go = Ker Gi2, with Gi2 = G10Gs.

The physical meaning is: a polynomial which is gauge invariant for €;
and es simultaneously always can be divided into two parts, each of
which is gauge invariant for one polarization vector.
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Case: m =2

Then the dimension can be calculated

dim W, 2 =dim(KerG; N KerG,)
=dim KerG; + dim KerGs — dim KerGo
=2(dimV,, 2 —dimV,, 1) — (dimV,, 2 — dim V), o)
=dimV, 2 —2dimV, ; +dimV, o
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Case: m =3

When generalize the method to m = 3, we meet problem for m = 3.
In linear algebra, we only have

dll’Il(Ul +Us + Ug)
=dim Uy + dim U + dim Us — dim(U; N Us) — dim((U; + Us) N Us),

since in general (U; + Us) NUs # Uy NUs + Uy N Us.
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Case: m =3

Proposition II: the distribution formula

(Ker G1 + Ker Ga) NKer G = Ker G; N Ker Gs + Ker G, N Ker Gs.

The physical meaning is: if a polynomial is gauge invariant for €3 and
for €1, €2 simultaneously, then can be divided into two parts, one is
gauge invariant for €q, €3, another is gauge invariant for es, €3.
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Then the dimension is

dimW,, 3 =dimKer G; + dim Ker Gy + dim Ker G3 — dim KerG; G,
— dim Ker gl g3 — dim Ker g2g3 + dim Ker glgggg
=dimV, 3 —3dimV, s +3dimV, ; — dim V), .
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General Case

Then the dimension of W, p,

dim Wn,m = Z(—l)s <T:) dim Vn,m—s

with

s=0
L%] .
. m\ (21)! 9
d m= )= —2)m—er
m Vim P (22) 21 (z!)(n )
n 4 5 6 7 8 9
dimW, 10 142 | 2364 | 45028 | 969980 | 23372550
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TABLE 1. Solving on-shell constraints: gluons.
Minimal Number of

Number of number of Number of terms on-shell
gluons metrics in ansatz gauge invariant
4 1 27 1

0 43 10
5 1 315 2

0 558 142
6 1 4575 6

0 8671 2364
7 1 79 275 24

0 157 400 45 028
8 1 1593 753 120

The two lines in Minimal number of metrics correspond to linear
combinations with leading terms as (e - €)(e- k)" =2 or (e- k)"
[Boels, Medina; 1607.08246]
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Manifestly Gauge Invariant Form
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® Applying the gauge invariance in the form of operator equation
[Tijk, G1) = 0uTij — 0w Tk, we can prove that every vector of
Wh,m (m < n) can be written in the form of linear
combinations of multiplications of (k; - fy, - - - fn, - k;) with
F = Kl — ek

s

® Because
(BfiA)(Ck;) = (Bf:C)(Ak;) + (CfiA)(Bk;),
all f-terms with more than two f can be split into fundamental

f-terms: (k; - fq - kj)7 (ki fa- fo- k/’j)v

® Note that there is another kind of gauge invariant factors
Tr(f--- f), but in fact we can also split them into the
combinations of (k; - fn, - - fn, - kj)-
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So we get the conclusion.

Proposition III: Gauge invariant vector

Every vector in W, ,, (m < n) can be recast in a manifestly gauge
invariant form, which is a linear combination of the multiplication of
fundamental f-terms with the total number of field strength f in
every monomial being m.
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I Amplitude

Proposition IV: Gauge invariant vector basis

The set of vectors

H(k}n,1 : fa2i—1 : foém‘ 'knfl) H (kn,1 ’ fBi : k])
=1 i=25+1

with s = 0,1,---, | 2] is the basis of Wy, (m < n —2).

¢ Momentum conservation eliminates k,,

° (kn—lfafbkn—l) - (kn—lfbfakn—l)a (kn—lfakn—l) -
0, (kn—1faka) =0.
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The number of the set of vectors N equal the dimension of W, ,,

dim Whm
S S () (s

5 m! m—s—2i
:Z (_)és!(mfszi)! 2t i!(n_2)
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Expansion of EYM in BCJ basis
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We change to expand EYM amplitudes in gauge invariant basis of
Wn+m,mu
AT =D Ci(&)Bi(e)

the new coefficients of the basis will be linear combinations of YM
amplitudes.

e Calculating the coefficients C(e) is difficult,
® gauge invariant structures of C or B; are known,

e differential operators act on coefficients B; (e).
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T

D q
Bla,6.7) o= [[ Fro,. QQ,HFthHF“”’ 7
=1 i=1

with 2p + ¢ +r = m and
kv fn, - fn; -k

Frin; ==

7 (k1 kny) (K Ky

=1

hi_ kv - fh; - kn,
hi k1 - kp
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Applying a differential operator as a multiplication of m insertion
operators for € to the expansion,

TrATY = Cla By) (T Ble, B.7) = ) A

Finding enough many differential operators, we get enough linear
equations to solve the coefficients.

"B T"By ... T"Bn Cy T A
B TB. ... "By || ¢ Ty AEYM

]

TBr TNB: ... TN'Bwy c TR ASYM

2
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A simple example

To illustrate the idea, consider a simple example A, 2(1,--- ,n; h1, ha).
dim Wy422 = (n —1)? + 1 and the basis is

a1 paz h1pa1 hapas haphi
Fthh27 FhQFh17 Fthh27 Fhth’ FthhQ'

with 2 < aj,a0, <n —1.

The expansion of Ay, 2(1,--- ,n;hy, he) is

Z C[F{ Fi2]F “IF“2+Z(C[F"1F FiiFh, + CIFR2FR IFp2Fr, )

ay,a2=2

+C[FhihylFhihy-
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There are four types of basis, then we apply four types differential
operators,

7:11h1(a1+1)7:12h2(a2+1) =
77L2h1n7:12h2(a2+1) = C
=

77L1h2n7:11h1(a1+1)
(k1 - khy) ThohynTine2 = C[Fhing)-

There are totally (n — 1) + 1 differential operators.
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Directly solving the system of linear equations is difficult. Properly
choosing differential operators, we can simplify the process of solving
the system of linear equations.
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Construct a good differential operator as a multiplication of m
properly chosen insertion operators, under its action, there is only one
unknown coefficient appearing in the equation, while other appearing
coefficients have been calculated.

The problem is reduced to construct good differential operators,
which only select specific B’s.

Constructing good differential operators require us to know more
about the structures of vectors in the gauge invariant basis.



Background Gauge Invariant Vector Space Expansion of EYM Amplitude
000000000000 0000000O0000000000000 0000000000000 00000000000 000000000 @00000000000000000

"By 0
0 LA R S N | S
Tri+1B1 Try+1B3, T +1BNa+1
T4 n, B Tor+-3, B, T +n: By 1 T+ N B+,
TNH:+N2+151 Tfrﬂ+Nn+IBN1 TJ{I?+N2+1BN1+1 TE+N2+1BN1+N2 TNﬂ:+Nz+IBN1+N2+1

0 0




Expansion of EYM Amplitude
000000000 0@0000000000000000

Quivers: fundamental f-terms

The structures of the gauge invariant basis can be depicted by some
quivers.

® (ep, - k)’s in gauge invariant vectors are important.

— -— > ——e.
€h; * khj €h; * kj

® The quiver representation of fundamental f-terms are

hZQh] hi-—)—-hj hi=-»--K,
Fhin, FZJ F.
The colour loop of Fp, 5, is a pseudo-loop. Real loops are dropped for
the index circles.
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Structures of gauge invariant basis

® The quiver of a vector of the basis has many disconnected
components.
All pseudo-loops, and these points labelled by K, are topological
disconnected from each other.

® Every component of the quiver of a vector in the basis has one of
the following structures

- =) — fe ey = ) =
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. hiphsp2 g7 haphaphspd g6 g4
For example: Fp,p, FhSFh4 Fh5 Fh6 and Fh1 th Fh4Fh3Fh5 Fh6

Ky, Ky Ky K
QTR
' <.

b
é S
hi he hs hs hs hg

—>4 é
hy Ty hs hi hs g
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Constructing differential operators

The vector in the gauge invariant basis is the multiplication of three
types of fundamental f-terms, the constructed differential operators
should distinguish them.

® First, Tan,(a+1) can only select Fj, uniquely,

h .
Tah;(at1) sz = 0ij%ab, Tah;(at1) Fryny =0, Tan;atr) Fyl, =0

® Second, Tp.p,n only selects Fh],', the Fy, ,5 ., is left in the next step,
jhi h; i’y

hr a;r
Thjhin th, =0:i1055/, Thihin th_, =0,

en. - k
5 (51006550 + 614"6,0).

Thihin Fron, =
jhin irhjr kl'khj
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® Third, (k1 - kn;)Tin,2Th,hn only selects the term Fp,p;,
(k1 - kny ) Ting2Thshin Fron, = 6idjye,
(kv Jon, Y Tin, 2 Thy non Rt Bt = —Fn, - (b1 + Ka,),
(ky = Jon, Y Tin, 2 Thy non Pl B = —on, -+ (ki + Ko, ).
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ground Gauge Invariant Vector S

The map from a given gauge invariant vector to a corresponding
differential operator is

Method of constructing differential operators

P a h, T
_ 5 @5
Bapy = H Frag; 1 hay; ]:I; Fhﬁi H Fha,i g
=

im1 i=1
P q T

Dapy = l_ll(lm “khag; ) Thag, hag; 1nTlhay,2 ]__[1 ’Thﬁghﬁin 1_[1 Tany, Ry (g 1)
= el bl
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Algorithm

The algorithm is implemented order by order, starting from p = 0 to
the largest value p and for a given p, we start from the largest r to
r=0.

® First, calculating these vectors with 0 pseudo-loop. Apply these
differential operators

q s
<H ﬁlﬁ;hﬁin> <H7:z—yih—yi(a»”+l)>
i=1 ) i=1

to the expansion equation, each operator gives one linear
equation of one unknown coefficients.
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® Second, calculating these vectors with 1 pseudo-loop. Substitute
the solutions in first step back to the expansion, apply

q T
((k’l “kaz)Tha, halnﬂh%z) <H nﬁ{hﬁin> <H Ewih%(%ﬁl)) ;
i=1 ‘ i=1

each operator gives one linear equation with one unknown
coefficient.

® Repeat the procedure until these vectors with [m/2] pseudo-loops.
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Example: AEYM

- oo - PPN - -~ - -~

[ [ [ | v | i

s 8 & — & o D —

n N n n n N

—— — ~» _e— ¢ —— — »
excluded

— — — <>

excluded

=, O e <> =

gl
luded luded luded Tuded excluded excluded

( basis with no pseudo-loop )

¢ O > <

( basis with one pseudo-loop )

Figure 3. Quiver representation of gauge invariant basis for AL%M. For simplicity, h,,h, and hy are denoted as
blue, red and yellow dots respectively. Arrows always flow from starting points of solid line toward pseudo-loops or

the ending points of dashed line, so they are omitted unless causing confusion. The ending point of dashed line is
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PPN

— b

=

excluded

excluded

=

excluded

K, depending on the h; it connects, and 2 < a;,a2,a3 < n — 1. Quivers with real loops are excluded.
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There are totally dimW,, 3 — 3(n — 2) — 8 = n® — 2 terms contributing.

® 0 pseudo-loop.
®*3K: 7:11h1(a1+1)7:12h2(a2+1)7713h3(as+1) = C[Flflzi FZZ F(}ZL‘;]
. BY ca~yg 2Oy
®*2K: ﬁﬁihﬁln gy gy (g A1) Ty by (ay +1) = C[Fhﬁi Fo Fh,yz]'
h / h A
. B B a~
* 1K ﬁﬁihﬁlnﬁﬁéhﬁz" Ay By (g +1) = C[Fhﬁi FhBi Fhvi]'

® 1 pseudo-loop.
® 1 K: ThghonTing2Tayhy (ay+1) = C[Fhans Fitl.
® 0 K: ThahonTins2Thohin = ClFhons FZT]
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Thanks for you attentions!



Expansion of EYM Amplitude
0000000000000 00000000e00000

Proof of Proposition III

Proof:

¢ Inductively, consider b, 1(k1,- -+, kn,€1)

n—1
b = Y ailer - k).
i=1

Solving the condition of gauge invariance of €; in b, 1,

2 —0:>Oén 1= — nZOél

Replacing a;, 1,

n1k1

n—2

_ (kn—1f1ks)
bn,l - ;az (kn—lkl) .
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Proof of Proposition III

Proof:
® (1) bym(k1,- - ,kn, €1, -+, €n) always has the form
m n—1
Bnm = Z 51 le + Z 61 le) Z (61 : ki)Tll;a
=2 1=m-+1

and Gybnm =0,1 <a <m.
(2) Applying [Tain,Ga] = Ta1 with 2 < a < m,

Tio = —(ko - T7,)-

Then

m n—1

Bn,m = Z(El iy T + Z (€1 - kiy)T15,

i1=2 i1=m-+1
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Proof of Proposition III

Proof:
® (3) Solving the condition of gauge invariance of ¢; of b, ,,, like
bn,la get

O (ko k ST s (Raei ki)
n,m — =+ 71T1
b, Z (kl'kn—l) i1=2m:+1 (kl'kn ) lig*

® (4) T7;, has already been the desired form, then expand 77; as
before, and apply the operator equations. Continuing the
procedure to the end, finally get

n—1
= 3 SR T121+ths

1=m—+1
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Proof of Proposition III

Proof:
m m m n—1
bus =D D D >
i1=2 ia=2 ig_1=2 is=m+1
ig#iy Gg 101 i.nig_n ts=1,i1,82, g9
En—1-fi-fio fiooy " Kio oy
k1 kn1 (Lig-ts—1)ts

® (5) Applying the following identity, all ”long” f-terms can be
split into fundamental f-terms,

(B fp- AC - kp) = (B~ fp-C)(A-kp) +(C- fp- A)(B - kp).

The proof is finished.
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Terms with Index Circle (1)

® Terms with index circles are those the expansion of them contain
such factors (€;, - ki, )(€iy - kig) - (€50 - Kiy)-

® Consider applying a differential operator
Tahi, hiy Tahiyhiy = Tani n;, to the EYM amplitude in CHY,

EYM
Tahi, hiy Tahighig == Tah by Anm

:/duPT(l,Z w3 1)(Tahg iy Tahiyhig ** Tah,, hilpf\PH'nz)Pf/‘IJ‘

® PfWy  can be expanded as the sum of all permutations like

PfWy, = Z (D)™ Py i i »

1<ig<ig< - <im<n
i1tig+-Fim=n

which is organized by the unique cycle decomposition of these
permutations. When the length of the cycle is one, it is denoted
by W), which is W) = =30, 4. es;ibb. When the length of
the cycle is bigger than one, it’s given by

tr(fngy - fhy,)
qj(htl"‘hir) = 20 :

i hig TR Ry
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Terms with Index Circle (2)

e Take the s = 2 as an example

Tahiho Tahghy P H,,
= Tahiho Tahghy Z (=) "™ Pijig. i
= Tahyhy Tangn {‘If(n‘l’(z)‘l’H

7‘1/(12)\111-1 Jr‘I/(l)‘I/(g)()

m—2 m—2

-+ \I/(Q)‘I/(l... )(' N ) + \P(l..Z...)(' o )}
= Tahihg Tahohy {‘1’(1)‘1’(2) - ‘1’(12)}‘I’Hm—2'

Among all cycle structures of permutations, only the first two
give nonzero contributions. Carrying it out explicitly, we get

Tahiho Tahohy PR H,, =Tan,ho Tahohy {\11(1)‘1’(2) - ‘1’(12)}\1’}%,2

_{ Ohsa Ohia _ 1

Oh1a%hi1hy OhohiOhsa Oh1hoOhohy

}pwy, =o.

® The proof is easy to generalize to the general case.
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